Files
openmesh/src/OpenMesh/Tools/Subdivider/Uniform/Sqrt3InterpolatingSubdividerLabsikGreinerT.hh

620 lines
25 KiB
C++
Raw Normal View History

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department for Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/*==========================================================================*\
* *
* $Revision: 410 $ *
* $Date: 2010-06-17 12:45:58 +0200 (Do, 17. Jun 2010) $ *
* *
\*==========================================================================*/
/** \file Sqrt3InterpolatingSubdividerLabsikGreinerT.hh
*
* Interpolating Labsik Greiner Subdivider as described in
* "Interpolating sqrt(3) subdivision" Labsik & Greiner, 2000
*
* Clement Courbet - clement.courbet@ecp.fr
*
*/
//=============================================================================
//
// CLASS InterpolatingSqrt3LGT
//
//=============================================================================
#ifndef OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
#define OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
//== INCLUDES =================================================================
#include <OpenMesh/Core/Mesh/Handles.hh>
#include <OpenMesh/Core/System/config.hh>
#include <OpenMesh/Tools/Subdivider/Uniform/SubdividerT.hh>
#if defined(_DEBUG) || defined(DEBUG)
// Makes life lot easier, when playing/messing around with low-level topology
// changing methods of OpenMesh
# include <OpenMesh/Tools/Utils/MeshCheckerT.hh>
# define ASSERT_CONSISTENCY( T, m ) \
assert(OpenMesh::Utils::MeshCheckerT<T>(m).check())
#else
# define ASSERT_CONSISTENCY( T, m )
#endif
// -------------------- STL
#include <vector>
#if defined(OM_CC_MIPS)
# include <math.h>
#else
# include <cmath>
#endif
//#define MIRROR_TRIANGLES
//#define MIN_NORM
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Uniform { // BEGIN_NS_UNIFORM
//== CLASS DEFINITION =========================================================
/** %Uniform Interpolating Sqrt3 subdivision algorithm
*
* Implementation of the interpolating Labsik Greiner Subdivider as described in
* "interpolating sqrt(3) subdivision" Labsik & Greiner, 2000
*
* Clement Courbet - clement.courbet@ecp.fr
*/
template <typename MeshType, typename RealType = float>
class InterpolatingSqrt3LGT : public SubdividerT< MeshType, RealType >
{
public:
typedef RealType real_t;
typedef MeshType mesh_t;
typedef SubdividerT< mesh_t, real_t > parent_t;
typedef std::vector< std::vector<real_t> > weights_t;
public:
InterpolatingSqrt3LGT(void) : parent_t()
{ init_weights(); }
InterpolatingSqrt3LGT(MeshType &_m) : parent_t(_m)
{ init_weights(); }
virtual ~InterpolatingSqrt3LGT() {}
public:
const char *name() const { return "Uniform Interpolating Sqrt3"; }
/// Pre-compute weights
void init_weights(size_t _max_valence=50)
{
weights_.resize(_max_valence);
weights_[3].resize(4);
weights_[3][0] = real_t(+4.0/27);
weights_[3][1] = real_t(-5.0/27);
weights_[3][2] = real_t(+4.0/27);
weights_[3][3] = real_t(+8.0/9);
weights_[4].resize(5);
weights_[4][0] = real_t(+2.0/9);
weights_[4][1] = real_t(-1.0/9);
weights_[4][2] = real_t(-1.0/9);
weights_[4][3] = real_t(+2.0/9);
weights_[4][4] = real_t(+7.0/9);
for(unsigned int K=5; K<_max_valence; ++K)
{
weights_[K].resize(K+1);
real_t aH = 2.0*cos(M_PI/K)/3.0;
weights_[K][K] = 1.0 - aH*aH;
for(unsigned int i=0; i<K; ++i)
{
weights_[K][i] = (aH*aH + 2.0*aH*cos(2.0*i*M_PI/K + M_PI/K) + 2.0*aH*aH*cos(4.0*i*M_PI/K + 2.0*M_PI/K))/K;
}
}
//just to be sure:
weights_[6].resize(0);
}
protected:
bool prepare( MeshType& _m )
{
_m.request_edge_status();
_m.add_property( fp_pos_ );
_m.add_property( ep_nv_ );
_m.add_property( mp_gen_ );
_m.property( mp_gen_ ) = 0;
return _m.has_edge_status()
&& ep_nv_.is_valid() && mp_gen_.is_valid();
}
bool cleanup( MeshType& _m )
{
_m.release_edge_status();
_m.remove_property( fp_pos_ );
_m.remove_property( ep_nv_ );
_m.remove_property( mp_gen_ );
return true;
}
bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true)
{
///TODO:Implement fixed positions
typename MeshType::VertexIter vit;
typename MeshType::VertexVertexIter vvit;
typename MeshType::EdgeIter eit;
typename MeshType::FaceIter fit;
typename MeshType::FaceVertexIter fvit;
typename MeshType::FaceHalfedgeIter fheit;
typename MeshType::VertexHandle vh;
typename MeshType::HalfedgeHandle heh;
typename MeshType::Point pos(0,0,0), zero(0,0,0);
size_t &gen = _m.property( mp_gen_ );
for (size_t l=0; l<_n; ++l)
{
// tag existing edges
for (eit=_m.edges_begin(); eit != _m.edges_end();++eit)
{
_m.status( *eit ).set_tagged( true );
if ( (gen%2) && _m.is_boundary(*eit) )
compute_new_boundary_points( _m, *eit ); // *) creates new vertices
}
// insert new vertices, and store pos in vp_pos_
typename MeshType::FaceIter fend = _m.faces_end();
for (fit = _m.faces_begin();fit != fend; ++fit)
{
if (_m.is_boundary(*fit))
{
if(gen%2)
_m.property(fp_pos_, *fit).invalidate();
else
{
//find the interior boundary halfedge
for( heh = _m.halfedge_handle(*fit); !_m.is_boundary( _m.opposite_halfedge_handle(heh) ); heh = _m.next_halfedge_handle(heh) )
;
assert(_m.is_boundary( _m.opposite_halfedge_handle(heh) ));
pos = zero;
//check for two boundaries case:
if( _m.is_boundary(_m.next_halfedge_handle(heh)) || _m.is_boundary(_m.prev_halfedge_handle(heh)) )
{
if(_m.is_boundary(_m.prev_halfedge_handle(heh)))
heh = _m.prev_halfedge_handle(heh); //ensure that the boundary halfedges are heh and heh->next
//check for three boundaries case:
if(_m.is_boundary(_m.next_halfedge_handle(_m.next_halfedge_handle(heh))))
{
//three boundaries, use COG of triangle
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
}
else
{
#ifdef MIRROR_TRIANGLES
//two boundaries, mirror two triangles
pos += real_t(2.0/9) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
#else
pos += real_t(7.0/24) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
pos += real_t(-1.0/24) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
#endif
}
}
else
{
vh = _m.to_vertex_handle(_m.next_halfedge_handle(heh));
//check last vertex regularity
if((_m.valence(vh) == 6) || _m.is_boundary(vh))
{
#ifdef MIRROR_TRIANGLES
//use regular rule and mirror one triangle
pos += real_t(5.0/9) * _m.point(vh);
pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
#else
#ifdef MIN_NORM
pos += real_t(1.0/9) * _m.point(vh);
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
#else
pos += real_t(1.0/2) * _m.point(vh);
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
#endif
#endif
}
else
{
//irregular setting, use usual irregular rule
unsigned int K = _m.valence(vh);
pos += weights_[K][K]*_m.point(vh);
heh = _m.opposite_halfedge_handle( _m.next_halfedge_handle(heh) );
for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
{
pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
}
}
}
vh = _m.add_vertex( pos );
_m.property(fp_pos_, *fit) = vh;
}
}
else
{
pos = zero;
int nOrdinary = 0;
//check number of extraordinary vertices
for(fvit = _m.fv_iter( *fit ); fvit.is_valid(); ++fvit)
if( (_m.valence(*fvit)) == 6 || _m.is_boundary(*fvit) )
++nOrdinary;
if(nOrdinary==3)
{
for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
{
//one ring vertex has weight 32/81
heh = *fheit;
assert(_m.to_vertex_handle(heh).is_valid());
pos += real_t(32.0/81) * _m.point(_m.to_vertex_handle(heh));
//tip vertex has weight -1/81
heh = _m.opposite_halfedge_handle(heh);
assert(heh.is_valid());
assert(_m.next_halfedge_handle(heh).is_valid());
assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
pos -= real_t(1.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
//outer vertices have weight -2/81
heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
assert(heh.is_valid());
assert(_m.next_halfedge_handle(heh).is_valid());
assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
assert(heh.is_valid());
assert(_m.next_halfedge_handle(heh).is_valid());
assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
}
}
else
{
//only use irregular vertices:
for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
{
vh = _m.to_vertex_handle(*fheit);
if( (_m.valence(vh) != 6) && (!_m.is_boundary(vh)) )
{
unsigned int K = _m.valence(vh);
pos += weights_[K][K]*_m.point(vh);
heh = _m.opposite_halfedge_handle( *fheit );
for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
{
pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
}
}
}
pos *= real_t(1.0/(3-nOrdinary));
}
vh = _m.add_vertex( pos );
_m.property(fp_pos_, *fit) = vh;
}
}
//split faces
for (fit = _m.faces_begin();fit != fend; ++fit)
{
if ( _m.is_boundary(*fit) && (gen%2))
{
boundary_split( _m, *fit );
}
else
{
assert(_m.property(fp_pos_, *fit).is_valid());
_m.split( *fit, _m.property(fp_pos_, *fit) );
}
}
// flip old edges
for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
if ( _m.status( *eit ).tagged() && !_m.is_boundary( *eit ) )
_m.flip(*eit);
// Now we have an consistent mesh!
ASSERT_CONSISTENCY( MeshType, _m );
// increase generation by one
++gen;
}
return true;
}
private:
// Pre-compute location of new boundary points for odd generations
// and store them in the edge property ep_nv_;
void compute_new_boundary_points( MeshType& _m,
const typename MeshType::EdgeHandle& _eh)
{
assert( _m.is_boundary(_eh) );
typename MeshType::HalfedgeHandle heh;
typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr;
typename MeshType::Point zero(0,0,0), P1, P2, P3, P4;
/*
// *---------*---------*
// / \ / \ / \
// / \ / \ / \
// / \ / \ / \
// / \ / \ / \
// *---------*--#---#--*---------*
//
// ^ ^ ^ ^ ^ ^
// P1 P2 pl pr P3 P4
*/
// get halfedge pointing from P3 to P2 (outer boundary halfedge)
heh = _m.halfedge_handle(_eh,
_m.is_boundary(_m.halfedge_handle(_eh,1)));
assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) );
assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) );
vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) );
vh2 = _m.to_vertex_handle( heh );
vh3 = _m.from_vertex_handle( heh );
vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh ));
P1 = _m.point(vh1);
P2 = _m.point(vh2);
P3 = _m.point(vh3);
P4 = _m.point(vh4);
vhl = _m.add_vertex(real_t(-5.0/81)*P1 + real_t(20.0/27)*P2 + real_t(10.0/27)*P3 + real_t(-4.0/81)*P4);
vhr = _m.add_vertex(real_t(-5.0/81)*P4 + real_t(20.0/27)*P3 + real_t(10.0/27)*P2 + real_t(-4.0/81)*P1);
_m.property(ep_nv_, _eh).first = vhl;
_m.property(ep_nv_, _eh).second = vhr;
}
void boundary_split( MeshType& _m, const typename MeshType::FaceHandle& _fh )
{
assert( _m.is_boundary(_fh) );
typename MeshType::VertexHandle vhl, vhr;
typename MeshType::FaceEdgeIter fe_it;
typename MeshType::HalfedgeHandle heh;
// find boundary edge
for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {};
// use precomputed, already inserted but not linked vertices
vhl = _m.property(ep_nv_, *fe_it).first;
vhr = _m.property(ep_nv_, *fe_it).second;
/*
// *---------*---------*
// / \ / \ / \
// / \ / \ / \
// / \ / \ / \
// / \ / \ / \
// *---------*--#---#--*---------*
//
// ^ ^ ^ ^ ^ ^
// P1 P2 pl pr P3 P4
*/
// get halfedge pointing from P2 to P3 (inner boundary halfedge)
heh = _m.halfedge_handle(*fe_it, _m.is_boundary(_m.halfedge_handle(*fe_it,0)));
typename MeshType::HalfedgeHandle pl_P3;
// split P2->P3 (heh) in P2->pl (heh) and pl->P3
boundary_split( _m, heh, vhl ); // split edge
pl_P3 = _m.next_halfedge_handle( heh ); // store next halfedge handle
boundary_split( _m, heh ); // split face
// split pl->P3 in pl->pr and pr->P3
boundary_split( _m, pl_P3, vhr );
boundary_split( _m, pl_P3 );
assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() );
assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() );
}
void boundary_split(MeshType& _m,
const typename MeshType::HalfedgeHandle& _heh,
const typename MeshType::VertexHandle& _vh)
{
assert( _m.is_boundary( _m.edge_handle(_heh) ) );
typename MeshType::HalfedgeHandle
heh(_heh),
opp_heh( _m.opposite_halfedge_handle(_heh) ),
new_heh, opp_new_heh;
typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh));
typename MeshType::HalfedgeHandle t_heh;
/*
* P5
* *
* /|\
* / \
* / \
* / \
* / \
* /_ heh new \
* *-----\*-----\*\-----*
* ^ ^ t_heh
* _vh to_vh
*
* P1 P2 P3 P4
*/
// Re-Setting Handles
// find halfedge point from P4 to P3
for(t_heh = heh;
_m.next_halfedge_handle(t_heh) != opp_heh;
t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
{}
assert( _m.is_boundary( t_heh ) );
new_heh = _m.new_edge( _vh, to_vh );
opp_new_heh = _m.opposite_halfedge_handle(new_heh);
// update halfedge connectivity
_m.set_next_halfedge_handle(t_heh, opp_new_heh); // P4-P3 -> P3-P2
_m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh)); // P2-P3 -> P3-P5
_m.set_next_halfedge_handle(heh, new_heh); // P1-P2 -> P2-P3
_m.set_next_halfedge_handle(opp_new_heh, opp_heh); // P3-P2 -> P2-P1
// both opposite halfedges point to same face
_m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
// let heh finally point to new inserted vertex
_m.set_vertex_handle(heh, _vh);
// let heh and new_heh point to same face
_m.set_face_handle(new_heh, _m.face_handle(heh));
// let opp_new_heh be the new outgoing halfedge for to_vh
// (replaces for opp_heh)
_m.set_halfedge_handle( to_vh, opp_new_heh );
// let opp_heh be the outgoing halfedge for _vh
_m.set_halfedge_handle( _vh, opp_heh );
}
void boundary_split( MeshType& _m,
const typename MeshType::HalfedgeHandle& _heh)
{
assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) );
typename MeshType::HalfedgeHandle
heh(_heh),
n_heh(_m.next_halfedge_handle(heh));
typename MeshType::VertexHandle
to_vh(_m.to_vertex_handle(heh));
typename MeshType::HalfedgeHandle
heh2(_m.new_edge(to_vh,
_m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))),
heh3(_m.opposite_halfedge_handle(heh2));
typename MeshType::FaceHandle
new_fh(_m.new_face()),
fh(_m.face_handle(heh));
// Relink (half)edges
_m.set_face_handle(heh, new_fh);
_m.set_face_handle(heh2, new_fh);
_m.set_next_halfedge_handle(heh2, _m.next_halfedge_handle(_m.next_halfedge_handle(n_heh)));
_m.set_next_halfedge_handle(heh, heh2);
_m.set_face_handle( _m.next_halfedge_handle(heh2), new_fh);
_m.set_next_halfedge_handle(heh3, n_heh);
_m.set_next_halfedge_handle(_m.next_halfedge_handle(n_heh), heh3);
_m.set_face_handle(heh3, fh);
_m.set_halfedge_handle( fh, n_heh);
_m.set_halfedge_handle(new_fh, heh);
}
private:
weights_t weights_;
OpenMesh::FPropHandleT< typename MeshType::VertexHandle > fp_pos_;
OpenMesh::EPropHandleT< std::pair< typename MeshType::VertexHandle,
typename MeshType::VertexHandle> > ep_nv_;
OpenMesh::MPropHandleT< size_t > mp_gen_;
};
//=============================================================================
} // END_NS_UNIFORM
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================
#endif // OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH
//=============================================================================