Files
openmesh/src/OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.cc

317 lines
10 KiB
C++
Raw Normal View History

/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2015 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see <http://www.gnu.org/licenses/>. *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
/** \file Adaptive/Composite/CompositeT.cc
*/
//=============================================================================
//
// CLASS CompositeT - IMPLEMENTATION
//
//=============================================================================
#define OPENMESH_SUBDIVIDER_ADAPTIVE_COMPOSITET_CC
//== INCLUDES =================================================================
#include <OpenMesh/Core/System/config.hh>
#include <OpenMesh/Core/System/omstream.hh>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.hh>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RuleInterfaceT.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Adaptive { // BEGIN_NS_ADAPTIVE
//== IMPLEMENTATION ==========================================================
template<class M>
bool
CompositeT<M> ::
initialize( void )
{
typename Mesh::VertexIter v_it;
typename Mesh::FaceIter f_it;
typename Mesh::EdgeIter e_it;
const typename Mesh::Point zero_point(0.0, 0.0, 0.0);
// ---------------------------------------- Init Vertices
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
{
mesh_.data(*v_it).set_state(0);
mesh_.data(*v_it).set_final();
mesh_.data(*v_it).set_position(0, mesh_.point(*v_it));
}
// ---------------------------------------- Init Faces
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it)
{
mesh_.data(*f_it).set_state(0);
mesh_.data(*f_it).set_final();
mesh_.data(*f_it).set_position(0, zero_point);
}
// ---------------------------------------- Init Edges
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it)
{
mesh_.data(*e_it).set_state(0);
mesh_.data(*e_it).set_final();
mesh_.data(*e_it).set_position(0, zero_point);
}
// ---------------------------------------- Init Rules
int n_subdiv_rules_ = 0;
// look for subdivision rule(s)
for (size_t i=0; i < n_rules(); ++i) {
if (rule_sequence_[i]->type()[0] == 'T' ||
rule_sequence_[i]->type()[0] == 't')
{
++n_subdiv_rules_;
subdiv_rule_ = rule_sequence_[i];
subdiv_type_ = rule_sequence_[i]->subdiv_type();
}
}
// check for correct number of subdivision rules
assert(n_subdiv_rules_ == 1);
if (n_subdiv_rules_ != 1)
{
std::cerr << "Error! More than one subdivision rules not allowed!\n";
return false;
}
// check for subdivision type
assert(subdiv_type_ == 3 || subdiv_type_ == 4);
if (subdiv_type_ != 3 && subdiv_type_ != 4)
{
::omerr() << "Error! Unknown subdivision type in sequence!" << std::endl;
return false;
}
// set pointer to last rule
// first_rule_ = rule_sequence_.front();
// last_rule_ = rule_sequence_.back(); //[n_rules() - 1];
// set numbers and previous rule
for (size_t i = 0; i < n_rules(); ++i)
{
rule_sequence_[i]->set_subdiv_type(subdiv_type_);
rule_sequence_[i]->set_n_rules(n_rules());
rule_sequence_[i]->set_number(i);
rule_sequence_[i]->set_prev_rule(rule_sequence_[(i+n_rules()-1)%n_rules()]);
rule_sequence_[i]->set_subdiv_rule(subdiv_rule_);
}
return true;
}
// ----------------------------------------------------------------------------
#define MOBJ mesh_.deref
#define TVH to_vertex_handle
#define HEH halfedge_handle
#define NHEH next_halfedge_handle
#define PHEH prev_halfedge_handle
#define OHEH opposite_halfedge_handle
// ----------------------------------------------------------------------------
template<class M>
void CompositeT<M>::refine(typename M::FaceHandle& _fh)
{
std::vector<typename Mesh::HalfedgeHandle> hh_vector;
// -------------------- calculate new level for faces and vertices
int new_face_level =
t_rule()->number() + 1 +
((int)floor((float)(mesh_.data(_fh).state() - t_rule()->number() - 1)/n_rules()) + 1) * n_rules();
int new_vertex_level =
new_face_level + l_rule()->number() - t_rule()->number();
// -------------------- store old vertices
// !!! only triangle meshes supported!
typename Mesh::VertexHandle vh[3];
vh[0] = mesh_.TVH(mesh_.HEH(_fh));
vh[1] = mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh)));
vh[2] = mesh_.TVH(mesh_.PHEH(mesh_.HEH(_fh)));
// save handles to incoming halfedges for getting the new vertices
// after subdivision (1-4 split)
if (subdiv_type_ == 4)
{
hh_vector.clear();
// green face
if (mesh_.data(_fh).final())
{
typename Mesh::FaceHalfedgeIter fh_it(mesh_.fh_iter(_fh));
for (; fh_it.is_valid(); ++fh_it)
{
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(*fh_it)));
}
}
// red face
else
{
typename Mesh::HalfedgeHandle red_hh(mesh_.data(_fh).red_halfedge());
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.NHEH(red_hh))));
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.PHEH(mesh_.OHEH(red_hh)))));
}
}
// -------------------- Average rule before topo rule?
if (t_rule()->number() > 0)
t_rule()->prev_rule()->raise(_fh, new_face_level-1);
// -------------------- Apply topological operator first
t_rule()->raise(_fh, new_face_level);
#if 0 // original code
assert(MOBJ(_fh).state() >=
subdiv_rule_->number()+1+(int) (MOBJ(_fh).state()/n_rules())*n_rules());
#else // improved code (use % operation and avoid floating point division)
assert( mesh_.data(_fh).state() >= ( t_rule()->number()+1+generation(_fh) ) );
#endif
// raise new vertices to final levels
if (subdiv_type_ == 3)
{
typename Mesh::VertexHandle new_vh(mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh))));
// raise new vertex to final level
l_rule()->raise(new_vh, new_vertex_level);
}
if (subdiv_type_ == 4)
{
typename Mesh::HalfedgeHandle hh;
typename Mesh::VertexHandle new_vh;
while (!hh_vector.empty()) {
hh = hh_vector.back();
hh_vector.pop_back();
// get new vertex
new_vh = mesh_.TVH(mesh_.NHEH(hh));
// raise new vertex to final level
l_rule()->raise(new_vh, new_vertex_level);
}
}
// raise old vertices to final position
l_rule()->raise(vh[0], new_vertex_level);
l_rule()->raise(vh[1], new_vertex_level);
l_rule()->raise(vh[2], new_vertex_level);
}
// ----------------------------------------------------------------------------
template<class M>
void CompositeT<M>::refine(typename M::VertexHandle& _vh)
{
// calculate next final level for vertex
int new_vertex_state = generation(_vh) + l_rule()->number() + 1;
// raise vertex to final position
l_rule()->raise(_vh, new_vertex_state);
}
// ----------------------------------------------------------------------------
template <class M>
std::string CompositeT<M>::rules_as_string(const std::string& _sep) const
{
std::string seq;
typename RuleSequence::const_iterator it = rule_sequence_.begin();
if ( it != rule_sequence_.end() )
{
seq = (*it)->type();
for (++it; it != rule_sequence_.end(); ++it )
{
seq += _sep;
seq += (*it)->type();
}
}
return seq;
}
// ----------------------------------------------------------------------------
#undef MOBJ
#undef TVH
#undef HEH
#undef NHEH
#undef PHEH
#undef OHEH
//=============================================================================
} // END_NS_ADAPTIVE
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================