Files
openmesh/src/OpenMesh/Core/Mesh/PolyMeshT_impl.hh

583 lines
18 KiB
C++
Raw Normal View History

/* ========================================================================= *
* *
* OpenMesh *
2023-03-01 13:03:33 +01:00
* Copyright (c) 2001-2023, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
//=============================================================================
//
// CLASS PolyMeshT - IMPLEMENTATION
//
//=============================================================================
#define OPENMESH_POLYMESH_C
//== INCLUDES =================================================================
#include <OpenMesh/Core/Mesh/PolyMeshT.hh>
#include <OpenMesh/Core/Geometry/LoopSchemeMaskT.hh>
#include <OpenMesh/Core/Utils/GenProg.hh>
#include <OpenMesh/Core/Utils/vector_cast.hh>
#include <OpenMesh/Core/Utils/vector_traits.hh>
#include <OpenMesh/Core/System/omstream.hh>
#include <vector>
//== NAMESPACES ===============================================================
namespace OpenMesh {
//== IMPLEMENTATION ==========================================================
template <class Kernel>
uint PolyMeshT<Kernel>::find_feature_edges(Scalar _angle_tresh)
{
assert(Kernel::has_edge_status());//this function needs edge status property
uint n_feature_edges = 0;
for (EdgeIter e_it = Kernel::edges_begin(); e_it != Kernel::edges_end(); ++e_it)
{
if (fabs(calc_dihedral_angle(*e_it)) > _angle_tresh)
{//note: could be optimized by comparing cos(dih_angle) vs. cos(_angle_tresh)
this->status(*e_it).set_feature(true);
n_feature_edges++;
}
else
{
this->status(*e_it).set_feature(false);
}
}
return n_feature_edges;
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::calc_face_normal(FaceHandle _fh) const
{
return calc_face_normal_impl(_fh, typename GenProg::IF<
vector_traits<PolyMeshT<Kernel>::Point>::size_ == 3,
PointIs3DTag,
PointIsNot3DTag
>::Result());
}
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::calc_face_normal_impl(FaceHandle _fh, PointIs3DTag) const
{
assert(this->halfedge_handle(_fh).is_valid());
ConstFaceVertexIter fv_it(this->cfv_iter(_fh));
// Safeguard for 1-gons
if (!(++fv_it).is_valid()) return Normal(0, 0, 0);
// Safeguard for 2-gons
if (!(++fv_it).is_valid()) return Normal(0, 0, 0);
// use Newell's Method to compute the surface normal
Normal n(0,0,0);
for(fv_it = this->cfv_iter(_fh); fv_it.is_valid(); ++fv_it)
{
// next vertex
ConstFaceVertexIter fv_itn = fv_it;
++fv_itn;
if (!fv_itn.is_valid())
fv_itn = this->cfv_iter(_fh);
// http://www.opengl.org/wiki/Calculating_a_Surface_Normal
const Point a = this->point(*fv_it) - this->point(*fv_itn);
const Point b = this->point(*fv_it) + this->point(*fv_itn);
2016-10-24 16:34:05 +02:00
// Due to traits, the value types of normals and points can be different.
// Therefore we cast them here.
n[0] += static_cast<typename vector_traits<Normal>::value_type>(a[1] * b[2]);
n[1] += static_cast<typename vector_traits<Normal>::value_type>(a[2] * b[0]);
n[2] += static_cast<typename vector_traits<Normal>::value_type>(a[0] * b[1]);
}
const typename vector_traits<Normal>::value_type length = norm(n);
// The expression ((n *= (1.0/norm)),n) is used because the OpenSG
// vector class does not return self after component-wise
// self-multiplication with a scalar!!!
return (length != typename vector_traits<Normal>::value_type(0))
? ((n *= (typename vector_traits<Normal>::value_type(1)/length)), n)
: Normal(0, 0, 0);
}
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::calc_face_normal_impl(FaceHandle, PointIsNot3DTag) const
{
// Dummy fallback implementation
// Returns just an initialized all 0 normal
2019-08-28 11:00:42 +02:00
// This function is only used if we don't have a matching implementation
// for normal computation with the current vector type defined in the mesh traits
assert(false);
Normal normal;
2019-08-28 11:00:42 +02:00
vectorize(normal,Scalar(0));
return normal;
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_face_normal(const Point& _p0,
const Point& _p1,
const Point& _p2) const
{
return calc_face_normal_impl(_p0, _p1, _p2, typename GenProg::IF<
vector_traits<PolyMeshT<Kernel>::Point>::size_ == 3,
PointIs3DTag,
PointIsNot3DTag
>::Result());
}
template<class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_normal(FaceHandle _fh) const
{
return calc_face_normal(_fh);
}
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_face_normal_impl(const Point& _p0,
const Point& _p1,
const Point& _p2,
PointIs3DTag) const
{
#if 1
// The OpenSG <Vector>::operator -= () does not support the type Point
// as rhs. Therefore use vector_cast at this point!!!
// Note! OpenSG distinguishes between Normal and Point!!!
Normal p1p0(vector_cast<Normal>(_p0)); p1p0 -= vector_cast<Normal>(_p1);
Normal p1p2(vector_cast<Normal>(_p2)); p1p2 -= vector_cast<Normal>(_p1);
Normal n = cross(p1p2, p1p0);
typename vector_traits<Normal>::value_type length = norm(n);
// The expression ((n *= (1.0/norm)),n) is used because the OpenSG
// vector class does not return self after component-wise
// self-multiplication with a scalar!!!
return (length != typename vector_traits<Normal>::value_type(0))
? ((n *= (typename vector_traits<Normal>::value_type(1)/length)),n)
: Normal(0,0,0);
#else
Point p1p0 = _p0; p1p0 -= _p1;
Point p1p2 = _p2; p1p2 -= _p1;
Normal n = vector_cast<Normal>(cross(p1p2, p1p0));
typename vector_traits<Normal>::value_type length = norm(n);
return (length != 0.0) ? n *= (1.0/length) : Normal(0,0,0);
#endif
}
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::calc_face_normal_impl(const Point&, const Point&, const Point&, PointIsNot3DTag) const
{
// Dummy fallback implementation
// Returns just an initialized all 0 normal
2019-08-28 11:00:42 +02:00
// This function is only used if we don't have a matching implementation
// for normal computation with the current vector type defined in the mesh traits
assert(false);
Normal normal;
2019-08-28 11:00:42 +02:00
vectorize(normal,Scalar(0));
return normal;
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_face_centroid(FaceHandle _fh) const
{
Point _pt;
2019-08-28 11:00:42 +02:00
vectorize(_pt, Scalar(0));
Scalar valence = 0.0;
for (ConstFaceVertexIter cfv_it = this->cfv_iter(_fh); cfv_it.is_valid(); ++cfv_it, valence += 1.0)
{
_pt += this->point(*cfv_it);
}
_pt /= valence;
return _pt;
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_centroid(FaceHandle _fh) const
{
return calc_face_centroid(_fh);
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_centroid(EdgeHandle _eh) const
{
return this->calc_edge_midpoint(_eh);
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_centroid(HalfedgeHandle _heh) const
{
return this->calc_edge_midpoint(this->edge_handle(_heh));
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_centroid(VertexHandle _vh) const
{
return this->point(_vh);
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Point
PolyMeshT<Kernel>::
calc_centroid(MeshHandle /*_mh*/) const
{
return this->vertices().avg([this](VertexHandle vh) { return this->point(vh); });
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_normals()
{
// Face normals are required to compute the vertex and the halfedge normals
if (Kernel::has_face_normals() ) {
update_face_normals();
if (Kernel::has_vertex_normals() ) update_vertex_normals();
if (Kernel::has_halfedge_normals()) update_halfedge_normals();
}
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_face_normals()
{
FaceIter f_it(Kernel::faces_sbegin()), f_end(Kernel::faces_end());
for (; f_it != f_end; ++f_it)
this->set_normal(*f_it, calc_face_normal(*f_it));
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_halfedge_normals(const double _feature_angle)
{
HalfedgeIter h_it(Kernel::halfedges_begin()), h_end(Kernel::halfedges_end());
for (; h_it != h_end; ++h_it)
this->set_normal(*h_it, calc_halfedge_normal(*h_it, _feature_angle));
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_halfedge_normal(HalfedgeHandle _heh, const double _feature_angle) const
{
if(Kernel::is_boundary(_heh))
return Normal(0,0,0);
else
{
std::vector<FaceHandle> fhs; fhs.reserve(10);
HalfedgeHandle heh = _heh;
// collect CW face-handles
do
{
fhs.push_back(Kernel::face_handle(heh));
heh = Kernel::next_halfedge_handle(heh);
heh = Kernel::opposite_halfedge_handle(heh);
}
while(heh != _heh && !Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
// collect CCW face-handles
if(heh != _heh && !is_estimated_feature_edge(_heh, _feature_angle))
{
heh = Kernel::opposite_halfedge_handle(_heh);
if ( !Kernel::is_boundary(heh) ) {
do
{
fhs.push_back(Kernel::face_handle(heh));
heh = Kernel::prev_halfedge_handle(heh);
heh = Kernel::opposite_halfedge_handle(heh);
}
while(!Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
}
}
Normal n(0,0,0);
for (unsigned int i = 0; i < fhs.size(); ++i)
n += Kernel::has_face_normals() ? Kernel::normal(fhs[i]) : calc_face_normal(fhs[i]);
return normalize(n);
}
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_normal(HalfedgeHandle _heh, const double _feature_angle) const
{
return calc_halfedge_normal(_heh, _feature_angle);
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_normal(EdgeHandle _eh) const
{
Normal n(0, 0, 0);
for (int i = 0; i < 2; ++i)
{
const auto heh = this->halfedge_handle(_eh, i);
const auto fh = this->face_handle(heh);
if (fh.is_valid())
n += calc_normal(fh);
}
const auto length = norm(n);
if (length != 0)
n /= length;
return n;
}
//-----------------------------------------------------------------------------
template <class Kernel>
bool
PolyMeshT<Kernel>::
is_estimated_feature_edge(HalfedgeHandle _heh, const double _feature_angle) const
{
EdgeHandle eh = Kernel::edge_handle(_heh);
if(Kernel::has_edge_status())
{
if(Kernel::status(eh).feature())
return true;
}
if(Kernel::is_boundary(eh))
return false;
// compute angle between faces
FaceHandle fh0 = Kernel::face_handle(_heh);
FaceHandle fh1 = Kernel::face_handle(Kernel::opposite_halfedge_handle(_heh));
Normal fn0 = Kernel::has_face_normals() ? Kernel::normal(fh0) : calc_face_normal(fh0);
Normal fn1 = Kernel::has_face_normals() ? Kernel::normal(fh1) : calc_face_normal(fh1);
// dihedral angle above angle threshold
return ( dot(fn0,fn1) < cos(_feature_angle) );
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_vertex_normal(VertexHandle _vh) const
{
Normal n;
calc_vertex_normal_fast(_vh,n);
Scalar length = norm(n);
if (length != 0.0) n *= (Scalar(1.0)/length);
return n;
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_fast(VertexHandle _vh, Normal& _n) const
{
2019-08-28 11:00:42 +02:00
vectorize(_n, Scalar(0));
for (ConstVertexFaceIter vf_it = this->cvf_iter(_vh); vf_it.is_valid(); ++vf_it)
_n += this->normal(*vf_it);
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_correct(VertexHandle _vh, Normal& _n) const
{
2019-08-28 11:00:42 +02:00
vectorize(_n, Scalar(0));
ConstVertexIHalfedgeIter cvih_it = this->cvih_iter(_vh);
if (! cvih_it.is_valid() )
{//don't crash on isolated vertices
return;
}
Normal in_he_vec;
calc_edge_vector(*cvih_it, in_he_vec);
for ( ; cvih_it.is_valid(); ++cvih_it)
{//calculates the sector normal defined by cvih_it and adds it to _n
if (this->is_boundary(*cvih_it))
{
continue;
}
HalfedgeHandle out_heh(this->next_halfedge_handle(*cvih_it));
Normal out_he_vec;
calc_edge_vector(out_heh, out_he_vec);
_n += cross(in_he_vec, out_he_vec);//sector area is taken into account
in_he_vec = out_he_vec;
in_he_vec *= -1;//change the orientation
}
Scalar length = norm(_n);
if (length != 0.0)
_n *= (Scalar(1.0)/length);
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_loop(VertexHandle _vh, Normal& _n) const
{
static const LoopSchemeMaskDouble& loop_scheme_mask__ =
LoopSchemeMaskDoubleSingleton::Instance();
Normal t_v(0.0,0.0,0.0), t_w(0.0,0.0,0.0);
unsigned int vh_val = this->valence(_vh);
unsigned int i = 0;
for (ConstVertexOHalfedgeIter cvoh_it = this->cvoh_iter(_vh); cvoh_it.is_valid(); ++cvoh_it, ++i)
{
VertexHandle r1_v( this->to_vertex_handle(*cvoh_it) );
t_v += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang0_weight(vh_val, i))*this->point(r1_v);
t_w += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang1_weight(vh_val, i))*this->point(r1_v);
}
_n = cross(t_w, t_v);//hack: should be cross(t_v, t_w), but then the normals are reversed?
}
//-----------------------------------------------------------------------------
template<class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_normal(VertexHandle _vh) const
{
Normal n;
calc_vertex_normal_correct(_vh, n);
return n;
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_vertex_normals()
{
VertexIter v_it(Kernel::vertices_begin()), v_end(Kernel::vertices_end());
for (; v_it!=v_end; ++v_it)
this->set_normal(*v_it, calc_vertex_normal(*v_it));
}
//=============================================================================
} // namespace OpenMesh
//=============================================================================