Files
openmesh/src/OpenMesh/Core/Geometry/QuadricT.hh

287 lines
10 KiB
C++
Raw Normal View History

/* ========================================================================= *
* *
* OpenMesh *
2023-03-01 13:03:33 +01:00
* Copyright (c) 2001-2023, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/** \file Core/Geometry/QuadricT.hh
*/
//=============================================================================
//
// CLASS QuadricT
//
//=============================================================================
#ifndef OPENMESH_GEOMETRY_QUADRIC_HH
#define OPENMESH_GEOMETRY_QUADRIC_HH
//== INCLUDES =================================================================
#include "Config.hh"
#include <OpenMesh/Core/Geometry/VectorT.hh>
#include <OpenMesh/Core/Utils/GenProg.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { //BEGIN_NS_OPENMESH
namespace Geometry { //BEGIN_NS_GEOMETRY
//== CLASS DEFINITION =========================================================
/** /class QuadricT Geometry/QuadricT.hh
Stores a quadric as a 4x4 symmetrix matrix. Used by the
error quadric based mesh decimation algorithms.
**/
template <class Scalar>
class QuadricT
{
public:
typedef Scalar value_type;
typedef QuadricT<Scalar> type;
typedef QuadricT<Scalar> Self;
// typedef VectorInterface<Scalar, VecStorage3<Scalar> > Vec3;
// typedef VectorInterface<Scalar, VecStorage4<Scalar> > Vec4;
//typedef Vector3Elem Vec3;
//typedef Vector4Elem Vec4;
/// construct with upper triangle of symmetrix 4x4 matrix
QuadricT(Scalar _a, Scalar _b, Scalar _c, Scalar _d,
Scalar _e, Scalar _f, Scalar _g,
Scalar _h, Scalar _i,
Scalar _j)
: a_(_a), b_(_b), c_(_c), d_(_d),
e_(_e), f_(_f), g_(_g),
h_(_h), i_(_i),
j_(_j)
{
}
/// constructor from given plane equation: ax+by+cz+d_=0
QuadricT( Scalar _a=0.0, Scalar _b=0.0, Scalar _c=0.0, Scalar _d=0.0 )
: a_(_a*_a), b_(_a*_b), c_(_a*_c), d_(_a*_d),
e_(_b*_b), f_(_b*_c), g_(_b*_d),
h_(_c*_c), i_(_c*_d),
j_(_d*_d)
{}
template <class _Point>
2019-05-29 08:32:28 +02:00
explicit QuadricT(const _Point& _pt)
{
set_distance_to_point(_pt);
}
template <class _Normal, class _Point>
QuadricT(const _Normal& _n, const _Point& _p)
{
set_distance_to_plane(_n,_p);
}
//set operator
void set(Scalar _a, Scalar _b, Scalar _c, Scalar _d,
Scalar _e, Scalar _f, Scalar _g,
Scalar _h, Scalar _i,
Scalar _j)
{
a_ = _a; b_ = _b; c_ = _c; d_ = _d;
e_ = _e; f_ = _f; g_ = _g;
h_ = _h; i_ = _i;
j_ = _j;
}
//sets the quadric representing the squared distance to _pt
template <class _Point>
void set_distance_to_point(const _Point& _pt)
{
set(1, 0, 0, -_pt[0],
1, 0, -_pt[1],
1, -_pt[2],
dot(_pt,_pt));
}
//sets the quadric representing the squared distance to the plane [_a,_b,_c,_d]
void set_distance_to_plane(Scalar _a, Scalar _b, Scalar _c, Scalar _d)
{
a_ = _a*_a; b_ = _a*_b; c_ = _a*_c; d_ = _a*_d;
e_ = _b*_b; f_ = _b*_c; g_ = _b*_d;
h_ = _c*_c; i_ = _c*_d;
j_ = _d*_d;
}
//sets the quadric representing the squared distance to the plane
//determined by the normal _n and the point _p
template <class _Normal, class _Point>
void set_distance_to_plane(const _Normal& _n, const _Point& _p)
{
set_distance_to_plane(_n[0], _n[1], _n[2], -dot(_n,_p));
}
/// set all entries to zero
void clear() { a_ = b_ = c_ = d_ = e_ = f_ = g_ = h_ = i_ = j_ = 0.0; }
/// add quadrics
QuadricT<Scalar>& operator+=( const QuadricT<Scalar>& _q )
{
a_ += _q.a_; b_ += _q.b_; c_ += _q.c_; d_ += _q.d_;
e_ += _q.e_; f_ += _q.f_; g_ += _q.g_;
h_ += _q.h_; i_ += _q.i_;
j_ += _q.j_;
return *this;
}
QuadricT<Scalar> operator+(const QuadricT<Scalar>& _other ) const
{
QuadricT<Scalar> result = *this;
return result += _other;
}
/// multiply by scalar
QuadricT<Scalar>& operator*=( Scalar _s)
{
a_ *= _s; b_ *= _s; c_ *= _s; d_ *= _s;
e_ *= _s; f_ *= _s; g_ *= _s;
h_ *= _s; i_ *= _s;
j_ *= _s;
return *this;
}
QuadricT<Scalar> operator*(Scalar _s) const
{
QuadricT<Scalar> result = *this;
return result *= _s;
}
/// multiply 4D vector from right: Q*v
template <class _Vec4>
_Vec4 operator*(const _Vec4& _v) const
{
Scalar x(_v[0]), y(_v[1]), z(_v[2]), w(_v[3]);
return _Vec4(x*a_ + y*b_ + z*c_ + w*d_,
x*b_ + y*e_ + z*f_ + w*g_,
x*c_ + y*f_ + z*h_ + w*i_,
x*d_ + y*g_ + z*i_ + w*j_);
}
/// evaluate quadric Q at (3D or 4D) vector v: v*Q*v
template <class _Vec>
Scalar operator()(const _Vec& _v) const
{
2017-04-26 12:46:30 +02:00
return evaluate(_v, GenProg::Int2Type<vector_traits<_Vec>::size_>());
}
Scalar a() const { return a_; }
Scalar b() const { return b_; }
Scalar c() const { return c_; }
Scalar d() const { return d_; }
Scalar e() const { return e_; }
Scalar f() const { return f_; }
Scalar g() const { return g_; }
Scalar h() const { return h_; }
Scalar i() const { return i_; }
Scalar j() const { return j_; }
Scalar xx() const { return a_; }
Scalar xy() const { return b_; }
Scalar xz() const { return c_; }
Scalar xw() const { return d_; }
Scalar yy() const { return e_; }
Scalar yz() const { return f_; }
Scalar yw() const { return g_; }
Scalar zz() const { return h_; }
Scalar zw() const { return i_; }
Scalar ww() const { return j_; }
protected:
/// evaluate quadric Q at 3D vector v: v*Q*v
template <class _Vec3>
Scalar evaluate(const _Vec3& _v, GenProg::Int2Type<3>/*_dimension*/) const
{
Scalar x(_v[0]), y(_v[1]), z(_v[2]);
return a_*x*x + 2.0*b_*x*y + 2.0*c_*x*z + 2.0*d_*x
+ e_*y*y + 2.0*f_*y*z + 2.0*g_*y
+ h_*z*z + 2.0*i_*z
+ j_;
}
/// evaluate quadric Q at 4D vector v: v*Q*v
template <class _Vec4>
Scalar evaluate(const _Vec4& _v, GenProg::Int2Type<4>/*_dimension*/) const
{
Scalar x(_v[0]), y(_v[1]), z(_v[2]), w(_v[3]);
return a_*x*x + 2.0*b_*x*y + 2.0*c_*x*z + 2.0*d_*x*w
+ e_*y*y + 2.0*f_*y*z + 2.0*g_*y*w
+ h_*z*z + 2.0*i_*z*w
+ j_*w*w;
}
private:
Scalar a_, b_, c_, d_,
e_, f_, g_,
h_, i_,
j_;
};
/// Quadric using floats
typedef QuadricT<float> Quadricf;
/// Quadric using double
typedef QuadricT<double> Quadricd;
//=============================================================================
} // END_NS_GEOMETRY
} // END_NS_OPENMESH
//============================================================================
#endif // OPENMESH_GEOMETRY_HH defined
//=============================================================================