Files
openmesh/src/Unittests/unittests_smart_ranges.cc

861 lines
27 KiB
C++
Raw Normal View History

2019-09-27 14:12:22 +02:00
#include <gtest/gtest.h>
#include <Unittests/unittests_common.hh>
#include <OpenMesh/Core/Mesh/PolyConnectivity.hh>
#include <OpenMesh/Core/Utils/PropertyManager.hh>
2020-10-15 14:34:17 +02:00
#include <OpenMesh/Core/Mesh/SmartRangePredicates.hh>
2019-09-27 14:12:22 +02:00
#include <iostream>
#include <chrono>
namespace {
class OpenMeshSmartRanges : public OpenMeshBase {
protected:
// This function is called before each test is run
virtual void SetUp() {
mesh_.clear();
// Add some vertices
Mesh::VertexHandle vhandle[8];
vhandle[0] = mesh_.add_vertex(Mesh::Point(-1, -1, 1));
vhandle[1] = mesh_.add_vertex(Mesh::Point( 1, -1, 1));
vhandle[2] = mesh_.add_vertex(Mesh::Point( 1, 1, 1));
vhandle[3] = mesh_.add_vertex(Mesh::Point(-1, 1, 1));
vhandle[4] = mesh_.add_vertex(Mesh::Point(-1, -1, -1));
vhandle[5] = mesh_.add_vertex(Mesh::Point( 1, -1, -1));
vhandle[6] = mesh_.add_vertex(Mesh::Point( 1, 1, -1));
vhandle[7] = mesh_.add_vertex(Mesh::Point(-1, 1, -1));
// Add six faces to form a cube
std::vector<Mesh::VertexHandle> face_vhandles;
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[3]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[3]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[4]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[6]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[6]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[7]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[7]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
// Test setup:
//
//
// 3 ======== 2
// / /|
// / / | z
// 0 ======== 1 | |
// | | | | y
// | 7 | 6 | /
// | | / | /
// | |/ |/
// 4 ======== 5 -------> x
//
// Check setup
EXPECT_EQ(18u, mesh_.n_edges() ) << "Wrong number of Edges";
EXPECT_EQ(36u, mesh_.n_halfedges() ) << "Wrong number of HalfEdges";
EXPECT_EQ(8u, mesh_.n_vertices() ) << "Wrong number of vertices";
EXPECT_EQ(12u, mesh_.n_faces() ) << "Wrong number of faces";
}
// This function is called after all tests are through
virtual void TearDown() {
// Do some final stuff with the member data here...
mesh_.clear();
}
// Member already defined in OpenMeshBase
//Mesh mesh_;
};
/*
* ====================================================================
* Define tests below
* ====================================================================
*/
template <typename HandleT>
struct F
{
2019-12-13 16:05:35 +01:00
unsigned int operator()(HandleT ) { return 1; }
2019-09-27 14:12:22 +02:00
};
/* Test if smart ranges work
*/
TEST_F(OpenMeshSmartRanges, Sum)
{
2019-12-13 16:25:28 +01:00
auto one = [](OpenMesh::VertexHandle ) { return 1u; };
2019-09-27 14:12:22 +02:00
EXPECT_EQ(mesh_.vertices().sum(one), mesh_.n_vertices());
EXPECT_EQ(mesh_.vertices().sum(F<OpenMesh::VertexHandle>()), mesh_.n_vertices());
EXPECT_EQ(mesh_.halfedges().sum(F<OpenMesh::HalfedgeHandle>()), mesh_.n_halfedges());
EXPECT_EQ(mesh_.edges().sum(F<OpenMesh::EdgeHandle>()), mesh_.n_edges());
EXPECT_EQ(mesh_.faces().sum(F<OpenMesh::FaceHandle>()), mesh_.n_faces());
for (auto vh : mesh_.vertices())
EXPECT_EQ(vh.vertices().sum(F<OpenMesh::VertexHandle>()), mesh_.valence(vh));
for (auto vh : mesh_.vertices())
EXPECT_EQ(vh.faces().sum(F<OpenMesh::FaceHandle>()), mesh_.valence(vh));
for (auto vh : mesh_.vertices())
EXPECT_EQ(vh.outgoing_halfedges().sum(F<OpenMesh::HalfedgeHandle>()), mesh_.valence(vh));
for (auto vh : mesh_.vertices())
EXPECT_EQ(vh.incoming_halfedges().sum(F<OpenMesh::HalfedgeHandle>()), mesh_.valence(vh));
for (auto fh : mesh_.faces())
EXPECT_EQ(fh.vertices().sum(F<OpenMesh::VertexHandle>()), mesh_.valence(fh));
for (auto fh : mesh_.faces())
EXPECT_EQ(fh.halfedges().sum(F<OpenMesh::HalfedgeHandle>()), mesh_.valence(fh));
for (auto fh : mesh_.faces())
EXPECT_EQ(fh.edges().sum(F<OpenMesh::EdgeHandle>()), mesh_.valence(fh));
for (auto fh : mesh_.faces())
2019-12-13 16:05:35 +01:00
EXPECT_EQ(fh.faces().sum(F<OpenMesh::FaceHandle>()), 3u);
2019-09-27 14:12:22 +02:00
}
/* Test if Property Manager can be used in smart ranges
*/
TEST_F(OpenMeshSmartRanges, PropertyManagerAsFunctor)
{
2020-03-24 15:40:26 +01:00
OpenMesh::VProp<Mesh::Point> myPos(mesh_);
for (auto vh : mesh_.vertices())
myPos(vh) = mesh_.point(vh);
Mesh::Point cog(0,0,0);
for (auto vh : mesh_.vertices())
cog += mesh_.point(vh);
cog /= mesh_.n_vertices();
auto cog2 = mesh_.vertices().avg(myPos);
EXPECT_LT(norm(cog - cog2), 0.00001) << "Computed center of gravities are significantly different.";
}
2019-09-27 16:34:20 +02:00
/* Test to vector
*/
TEST_F(OpenMeshSmartRanges, ToVector)
{
2020-03-24 15:40:26 +01:00
OpenMesh::HProp<OpenMesh::Vec2d> uvs(mesh_);
2019-09-27 16:34:20 +02:00
for (auto heh : mesh_.halfedges())
uvs(heh) = OpenMesh::Vec2d(heh.idx(), (heh.idx() * 13)%7);
for (auto fh : mesh_.faces())
{
auto tri_uvs = fh.halfedges().to_vector(uvs);
auto heh_handles = fh.halfedges().to_vector();
for (auto heh : heh_handles)
2019-12-09 11:15:26 +01:00
heh.next();
2019-09-27 16:34:20 +02:00
}
auto vertex_vec = mesh_.vertices().to_vector();
for (auto vh : vertex_vec)
2019-12-09 11:15:26 +01:00
vh.out();
2019-09-27 16:34:20 +02:00
}
/* Test to array
*/
TEST_F(OpenMeshSmartRanges, ToArray)
{
2020-03-24 15:40:26 +01:00
OpenMesh::HProp<OpenMesh::Vec2d> uvs(mesh_);
2019-09-27 16:34:20 +02:00
for (auto heh : mesh_.halfedges())
uvs(heh) = OpenMesh::Vec2d(heh.idx(), (heh.idx() * 13)%7);
for (auto fh : mesh_.faces())
{
2019-12-09 11:15:26 +01:00
fh.halfedges().to_array<3>(uvs);
fh.halfedges().to_array<3>();
2019-09-27 16:34:20 +02:00
}
}
2019-09-27 16:34:20 +02:00
/* Test bounding box
*/
TEST_F(OpenMeshSmartRanges, BoundingBox)
{
// The custom vecs OpenMesh are tested with here do not implement a min or max function.
// Thus we convert here.
2020-03-24 15:40:26 +01:00
OpenMesh::VProp<OpenMesh::Vec3f> myPos(mesh_);
2019-09-27 16:34:20 +02:00
for (auto vh : mesh_.vertices())
2020-10-15 14:34:17 +02:00
for (int i = 0; i < 3; ++i)
myPos(vh)[i] = mesh_.point(vh)[i];
auto bb_min = mesh_.vertices().min(myPos);
auto bb_max = mesh_.vertices().max(myPos);
2019-12-09 11:15:26 +01:00
mesh_.vertices().minmax(myPos);
EXPECT_LT(norm(bb_min - OpenMesh::Vec3f(-1,-1,-1)), 0.000001) << "Bounding box minimum seems off";
EXPECT_LT(norm(bb_max - OpenMesh::Vec3f( 1, 1, 1)), 0.000001) << "Bounding box maximum seems off";
2019-09-27 16:34:20 +02:00
auto uvs = OpenMesh::makeTemporaryProperty<OpenMesh::HalfedgeHandle, OpenMesh::Vec2d>(mesh_);
for (auto heh : mesh_.halfedges())
uvs(heh) = OpenMesh::Vec2d(heh.idx(), (heh.idx() * 13)%7);
for (auto fh : mesh_.faces())
{
2019-12-09 11:15:26 +01:00
fh.halfedges().min(uvs);
fh.halfedges().max(uvs);
2019-09-27 16:34:20 +02:00
}
}
2020-03-24 15:40:26 +01:00
/* Test for each
*/
TEST_F(OpenMeshSmartRanges, ForEach)
{
std::vector<int> vec;
auto f = [&vec](OpenMesh::VertexHandle vh) { vec.push_back(vh.idx()); };
mesh_.vertices().for_each(f);
ASSERT_EQ(vec.size(), mesh_.n_vertices()) << "vec has wrong size";
for (size_t i = 0; i < vec.size(); ++i)
EXPECT_EQ(vec[i], i) << "wrong index in vector";
}
2020-03-27 14:26:23 +01:00
/* Test filter
*/
TEST_F(OpenMeshSmartRanges, Filtered)
{
using VH = OpenMesh::VertexHandle;
2020-05-06 11:52:15 +02:00
using FH = OpenMesh::FaceHandle;
2020-03-27 14:26:23 +01:00
auto is_even = [](VH vh) { return vh.idx() % 2 == 0; };
auto is_odd = [](VH vh) { return vh.idx() % 2 == 1; };
auto is_divisible_by_3 = [](VH vh) { return vh.idx() % 3 == 0; };
auto to_id = [](VH vh) { return vh.idx(); };
auto even_vertices = mesh_.vertices().filtered(is_even).to_vector(to_id);
EXPECT_EQ(even_vertices.size(), 4);
EXPECT_EQ(even_vertices[0], 0);
EXPECT_EQ(even_vertices[1], 2);
EXPECT_EQ(even_vertices[2], 4);
EXPECT_EQ(even_vertices[3], 6);
auto odd_vertices = mesh_.vertices().filtered(is_odd).to_vector(to_id);
EXPECT_EQ(odd_vertices.size(), 4);
EXPECT_EQ(odd_vertices[0], 1);
EXPECT_EQ(odd_vertices[1], 3);
EXPECT_EQ(odd_vertices[2], 5);
EXPECT_EQ(odd_vertices[3], 7);
auto even_3_vertices = mesh_.vertices().filtered(is_even).filtered(is_divisible_by_3).to_vector(to_id);
EXPECT_EQ(even_3_vertices.size(), 2);
EXPECT_EQ(even_3_vertices[0], 0);
EXPECT_EQ(even_3_vertices[1], 6);
auto odd_3_vertices = mesh_.vertices().filtered(is_odd).filtered(is_divisible_by_3).to_vector(to_id);
EXPECT_EQ(odd_3_vertices.size(), 1);
EXPECT_EQ(odd_3_vertices[0], 3);
// create a vector of vertices in the order they are visited when iterating over face vertices, but every vertex only once
std::vector<VH> vertices;
OpenMesh::VProp<bool> to_be_processed(true, mesh_);
auto store_vertex = [&](VH vh) { to_be_processed(vh) = false; vertices.push_back(vh); };
for (auto fh : mesh_.faces())
fh.vertices().filtered(to_be_processed).for_each(store_vertex);
EXPECT_EQ(vertices.size(), mesh_.n_vertices()) << " number of visited vertices not correct";
EXPECT_TRUE(mesh_.vertices().all_of([&](VH vh) { return !to_be_processed(vh); })) << "did not visit all vertices";
2020-05-06 11:52:15 +02:00
{
OpenMesh::FProp<bool> to_be_visited(true, mesh_);
int visited_faces_in_main_loop = 0;
int visited_faces_in_sub_loop = 0;
for (auto fh : mesh_.faces().filtered(to_be_visited))
{
to_be_visited(fh) = false;
++visited_faces_in_main_loop;
for (auto neighbor : fh.faces().filtered(to_be_visited))
{
to_be_visited(neighbor) = false;
++visited_faces_in_sub_loop;
}
}
EXPECT_LT(visited_faces_in_main_loop, mesh_.n_faces()) << "Visted more faces than expected";
EXPECT_TRUE(mesh_.faces().all_of([&](FH fh) { return !to_be_visited(fh); })) << "did not visit all faces";
EXPECT_EQ(visited_faces_in_main_loop + visited_faces_in_sub_loop, mesh_.n_faces()) << "Did not visited all faces exactly once";
}
{
OpenMesh::FProp<bool> to_be_visited(true, mesh_);
const auto& to_be_visited_const_ref = to_be_visited;
int visited_faces_in_main_loop = 0;
int visited_faces_in_sub_loop = 0;
for (auto fh : mesh_.faces().filtered(to_be_visited_const_ref))
{
to_be_visited(fh) = false;
++visited_faces_in_main_loop;
for (auto neighbor : fh.faces().filtered(to_be_visited_const_ref))
{
to_be_visited(neighbor) = false;
++visited_faces_in_sub_loop;
}
}
EXPECT_LT(visited_faces_in_main_loop, mesh_.n_faces()) << "Visted more faces than expected";
EXPECT_TRUE(mesh_.faces().all_of([&](FH fh) { return !to_be_visited(fh); })) << "did not visit all faces";
EXPECT_EQ(visited_faces_in_main_loop + visited_faces_in_sub_loop, mesh_.n_faces()) << "Did not visited all faces exactly once";
}
2020-03-27 14:26:23 +01:00
}
/* Test avg
*/
TEST_F(OpenMeshSmartRanges, Avg)
{
Mesh::Point cog(0,0,0);
for (auto vh : mesh_.vertices())
cog += mesh_.point(vh);
cog /= mesh_.n_vertices();
auto points = OpenMesh::getPointsProperty(mesh_);
auto cog2 = mesh_.vertices().avg(points);
EXPECT_LT(norm(cog - cog2), 0.00001) << "Computed center of gravities are significantly different.";
}
/* Test weighted avg
*/
TEST_F(OpenMeshSmartRanges, WeightedAvg)
{
Mesh::Point cog(0,0,0);
for (auto fh : mesh_.faces())
cog += mesh_.calc_face_centroid(fh);
cog /= mesh_.n_faces();
OpenMesh::FProp<float> area(mesh_);
for (auto fh : mesh_.faces())
area[fh] = mesh_.calc_face_area(fh);
auto cog2 = mesh_.faces().avg([&](OpenMesh::FaceHandle fh) { return mesh_.calc_face_centroid(fh); }, area);
EXPECT_LT(norm(cog - cog2), 0.00001) << "Computed area weighted center of gravities are significantly different.";
}
2020-03-27 14:26:23 +01:00
2019-09-27 14:12:22 +02:00
2020-10-15 14:34:17 +02:00
template <typename HandleT>
void test_range_predicates(Mesh& _mesh)
{
using namespace OpenMesh::Predicates;
auto get_random_set = [&](int n)
{
auto max = _mesh.n_elements<HandleT>();
std::vector<HandleT> set;
set.push_back(HandleT(0));
for (int i = 0; i < n; ++i)
set.push_back(HandleT(rand() % max));
std::sort(set.begin(), set.end());
set.erase(std::unique(set.begin(), set.end()), set.end());
return set;
};
// Feature
{
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_feature(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_feature(true);
auto set2 = _mesh.elements<HandleT>().filtered(Feature()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_feature(false);
}
// Selected
{
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_selected(true);
auto set2 = _mesh.elements<HandleT>().filtered(Selected()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
}
// Tagged
{
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_tagged(true);
auto set2 = _mesh.elements<HandleT>().filtered(Tagged()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
// Tagged2
{
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged2(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_tagged2(true);
auto set2 = _mesh.elements<HandleT>().filtered(Tagged2()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged2(false);
}
// Locked
{
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_locked(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_locked(true);
auto set2 = _mesh.elements<HandleT>().filtered(Locked()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_locked(false);
}
// Hidden
{
for (auto el : _mesh.all_elements<HandleT>())
_mesh.status(el).set_hidden(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_hidden(true);
auto set2 = _mesh.all_elements<HandleT>().filtered(Hidden()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.all_elements<HandleT>())
_mesh.status(el).set_hidden(false);
}
// Deleted
{
for (auto el : _mesh.all_elements<HandleT>())
_mesh.status(el).set_deleted(false);
auto set = get_random_set(4);
for (auto el : set)
_mesh.status(el).set_deleted(true);
auto set2 = _mesh.all_elements<HandleT>().filtered(Deleted()).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
for (auto el : _mesh.all_elements<HandleT>())
_mesh.status(el).set_deleted(false);
}
// Custom property
{
OpenMesh::PropertyManager<typename OpenMesh::PropHandle<HandleT>::template type<bool>> prop(false, _mesh);
auto set = get_random_set(4);
for (auto el : set)
prop[el] = true;
auto set2 = _mesh.elements<HandleT>().filtered(prop).to_vector();
EXPECT_EQ(set.size(), set2.size()) << "Set sizes differ";
for (size_t i = 0; i < std::min(set.size(), set2.size()); ++i)
EXPECT_EQ(set[i], set2[i]) << "Sets differ at position " << i;
}
// boundary
{
for (auto el : _mesh.elements<HandleT>().filtered(Boundary()))
EXPECT_TRUE(el.is_boundary());
int n_boundary1 = 0.0;
for (auto el : _mesh.elements<HandleT>())
if (el.is_boundary())
n_boundary1 += 1;
int n_boundary2 = _mesh.elements<HandleT>().count_if(Boundary());
EXPECT_EQ(n_boundary1, n_boundary2);
}
}
template <typename HandleT>
void test_range_predicate_combinations(Mesh& _mesh)
{
using namespace OpenMesh::Predicates;
auto n_elements = _mesh.n_elements<HandleT>();
auto get_random_set = [&](int n)
{
std::vector<HandleT> set;
for (int i = 0; i < n; ++i)
set.push_back(HandleT(rand() % n_elements));
std::sort(set.begin(), set.end());
set.erase(std::unique(set.begin(), set.end()), set.end());
return set;
};
// negation
{
auto set = get_random_set(4);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : set)
_mesh.status(el).set_selected(true);
auto true_set = _mesh.elements<HandleT>().filtered(Selected()).to_vector();
auto false_set = _mesh.elements<HandleT>().filtered(!Selected()).to_vector();
std::vector<HandleT> intersection;
std::set_intersection(true_set.begin(), true_set.end(), false_set.begin(), false_set.end(), std::back_inserter(intersection));
EXPECT_TRUE(intersection.empty());
EXPECT_EQ(true_set.size() + false_set.size(), n_elements);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
}
// conjunction
{
auto set1 = get_random_set(4);
auto set2 = get_random_set(4);
// make sure there is some overlap
{
auto set3 = get_random_set(3);
set1.insert(set1.end(), set3.begin(), set3.end());
set2.insert(set2.end(), set3.begin(), set3.end());
std::sort(set1.begin(), set1.end());
std::sort(set2.begin(), set2.end());
set1.erase(std::unique(set1.begin(), set1.end()), set1.end());
set2.erase(std::unique(set2.begin(), set2.end()), set2.end());
}
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
for (auto el : set1)
_mesh.status(el).set_selected(true);
for (auto el : set2)
_mesh.status(el).set_tagged(true);
auto set = _mesh.elements<HandleT>().filtered(Selected() && Tagged()).to_vector();
std::vector<HandleT> intersection;
std::set_intersection(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(intersection));
EXPECT_EQ(intersection.size(), set.size());
for (size_t i = 0; i < std::min(intersection.size(), set.size()); ++i)
EXPECT_EQ(intersection[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
// Disjunction
{
auto set1 = get_random_set(4);
auto set2 = get_random_set(4);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
for (auto el : set1)
_mesh.status(el).set_selected(true);
for (auto el : set2)
_mesh.status(el).set_tagged(true);
auto set = _mesh.elements<HandleT>().filtered(Selected() || Tagged()).to_vector();
std::vector<HandleT> union_set;
std::set_union(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(union_set));
EXPECT_EQ(union_set.size(), set.size());
for (size_t i = 0; i < std::min(union_set.size(), set.size()); ++i)
EXPECT_EQ(union_set[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
}
template <typename HandleT>
bool test_func(HandleT _h)
{
return _h.idx() % 3 == 0;
}
template <typename HandleT>
void test_make_predicate(Mesh& _mesh)
{
using namespace OpenMesh::Predicates;
auto n_elements = _mesh.n_elements<HandleT>();
auto get_random_set = [&](int n)
{
std::vector<HandleT> set;
for (int i = 0; i < n; ++i)
set.push_back(HandleT(rand() % n_elements));
std::sort(set.begin(), set.end());
set.erase(std::unique(set.begin(), set.end()), set.end());
return set;
};
// custom property
{
OpenMesh::PropertyManager<typename OpenMesh::PropHandle<HandleT>::template type<bool>> prop(false, _mesh);
auto set1 = get_random_set(4);
auto set2 = get_random_set(4);
for (auto el : set1)
prop[el] = true;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : set2)
_mesh.status(el).set_selected(true);
auto set = _mesh.elements<HandleT>().filtered(Selected() || make_predicate(prop)).to_vector();
std::vector<HandleT> union_set;
std::set_union(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(union_set));
EXPECT_EQ(union_set.size(), set.size());
for (size_t i = 0; i < std::min(union_set.size(), set.size()); ++i)
EXPECT_EQ(union_set[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
// lambda
{
OpenMesh::PropertyManager<typename OpenMesh::PropHandle<HandleT>::template type<bool>> prop(false, _mesh);
auto set1 = get_random_set(4);
auto set2 = get_random_set(4);
for (auto el : set1)
prop[el] = true;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : set2)
_mesh.status(el).set_selected(true);
auto test = [&](HandleT h) { return prop(h); };
auto set = _mesh.elements<HandleT>().filtered(Selected() || make_predicate(test)).to_vector();
std::vector<HandleT> union_set;
std::set_union(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(union_set));
EXPECT_EQ(union_set.size(), set.size());
for (size_t i = 0; i < std::min(union_set.size(), set.size()); ++i)
EXPECT_EQ(union_set[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
// r value lambda
{
OpenMesh::PropertyManager<typename OpenMesh::PropHandle<HandleT>::template type<bool>> prop(false, _mesh);
auto set1 = get_random_set(4);
auto set2 = get_random_set(4);
for (auto el : set1)
prop[el] = true;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : set2)
_mesh.status(el).set_selected(true);
auto set = _mesh.elements<HandleT>().filtered(Selected() || make_predicate([&](HandleT h) { return prop(h); })).to_vector();
std::vector<HandleT> union_set;
std::set_union(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(union_set));
EXPECT_EQ(union_set.size(), set.size());
for (size_t i = 0; i < std::min(union_set.size(), set.size()); ++i)
EXPECT_EQ(union_set[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
// function pointer
{
auto set1 = _mesh.elements<HandleT>().filtered([&](const HandleT& h) { return test_func(h); }).to_vector();
auto set2 = get_random_set(4);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : set2)
_mesh.status(el).set_selected(true);
auto set = _mesh.elements<HandleT>().filtered(Selected() || make_predicate(&test_func<HandleT>)).to_vector();
std::vector<HandleT> union_set;
std::set_union(set1.begin(), set1.end(), set2.begin(), set2.end(), std::back_inserter(union_set));
EXPECT_EQ(union_set.size(), set.size());
for (size_t i = 0; i < std::min(union_set.size(), set.size()); ++i)
EXPECT_EQ(union_set[i], set[i]) << "Sets differ at position " << i;
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_selected(false);
for (auto el : _mesh.elements<HandleT>())
_mesh.status(el).set_tagged(false);
}
}
TEST_F(OpenMeshSmartRanges, Predicate)
{
using namespace OpenMesh;
mesh_.request_vertex_status();
mesh_.request_halfedge_status();
mesh_.request_edge_status();
mesh_.request_face_status();
mesh_.delete_face(FaceHandle(0)); // ensure there is a boundary
mesh_.garbage_collection();
test_range_predicates<VertexHandle>(mesh_);
test_range_predicates<HalfedgeHandle>(mesh_);
test_range_predicates<EdgeHandle>(mesh_);
test_range_predicates<FaceHandle>(mesh_);
test_range_predicate_combinations<VertexHandle>(mesh_);
test_range_predicate_combinations<HalfedgeHandle>(mesh_);
test_range_predicate_combinations<EdgeHandle>(mesh_);
test_range_predicate_combinations<FaceHandle>(mesh_);
test_make_predicate<VertexHandle>(mesh_);
test_make_predicate<HalfedgeHandle>(mesh_);
test_make_predicate<EdgeHandle>(mesh_);
test_make_predicate<FaceHandle>(mesh_);
}
2019-09-27 14:12:22 +02:00
}