Files
openmesh/src/Unittests/unittests_tutorials.cc

885 lines
28 KiB
C++
Raw Normal View History

#include <gtest/gtest.h>
#include <Unittests/unittests_common.hh>
#include <string>
#include <map>
#include "generate_cube.hh"
#include "fill_props.hh"
/*
* ====================================================================
* Definition of custom properties related classes
* ====================================================================
*/
struct MyData
{
int ival;
double dval;
bool bval;
OpenMesh::Vec4f vec4fval;
MyData()
: ival(0), dval(0.0), bval(false)
{ }
MyData( const MyData& _cpy )
: ival(_cpy.ival), dval(_cpy.dval), bval(_cpy.bval),
vec4fval(_cpy.vec4fval)
{ }
// ---------- assignment
MyData& operator = (const MyData& _rhs)
{
ival = _rhs.ival;
dval = _rhs.dval;
bval = _rhs.bval;
vec4fval = _rhs.vec4fval;
return *this;
}
MyData& operator = (int _rhs) { ival = _rhs; return *this; }
MyData& operator = (double _rhs) { dval = _rhs; return *this; }
MyData& operator = (bool _rhs) { bval = _rhs; return *this; }
MyData& operator = (const OpenMesh::Vec4f& _rhs)
{ vec4fval = _rhs; return *this; }
// ---------- comparison
bool operator == (const MyData& _rhs) const
{
return ival == _rhs.ival
&& dval == _rhs.dval
&& bval == _rhs.bval
&& vec4fval == _rhs.vec4fval;
}
bool operator != (const MyData& _rhs) const { return !(*this == _rhs); }
};
typedef std::map< std::string, unsigned int > MyMap;
namespace OpenMesh {
namespace IO {
// support persistence for struct MyData
template <> struct binary<MyData>
{
typedef MyData value_type;
static const bool is_streamable = true;
// return binary size of the value
static size_t size_of(void)
{
return sizeof(int)+sizeof(double)+sizeof(bool)+sizeof(OpenMesh::Vec4f);
}
static size_t size_of(const value_type&)
{
return size_of();
}
static size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
{
size_t bytes;
bytes = IO::store( _os, _v.ival, _swap );
bytes += IO::store( _os, _v.dval, _swap );
bytes += IO::store( _os, _v.bval, _swap );
bytes += IO::store( _os, _v.vec4fval, _swap );
return _os.good() ? bytes : 0;
}
static size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
{
size_t bytes;
bytes = IO::restore( _is, _v.ival, _swap );
bytes += IO::restore( _is, _v.dval, _swap );
bytes += IO::restore( _is, _v.bval, _swap );
bytes += IO::restore( _is, _v.vec4fval, _swap );
return _is.good() ? bytes : 0;
}
};
template <> struct binary< MyMap >
{
typedef MyMap value_type;
static const bool is_streamable = true;
// return generic binary size of self, if known
static size_t size_of(void) { return UnknownSize; }
// return binary size of the value
static size_t size_of(const value_type& _v)
{
if (_v.empty())
return sizeof(unsigned int);
value_type::const_iterator it = _v.begin();
unsigned int N = _v.size();
size_t bytes = IO::size_of(N);
for(;it!=_v.end(); ++it)
{
bytes += IO::size_of( it->first );
bytes += IO::size_of( it->second );
}
return bytes;
}
static
size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
{
size_t bytes = 0;
unsigned int N = _v.size();
value_type::const_iterator it = _v.begin();
bytes += IO::store( _os, N, _swap );
for (; it != _v.end() && _os.good(); ++it)
{
bytes += IO::store( _os, it->first, _swap );
bytes += IO::store( _os, it->second, _swap );
}
return _os.good() ? bytes : 0;
}
static
size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
{
size_t bytes = 0;
unsigned int N = 0;
_v.clear();
bytes += IO::restore( _is, N, _swap );
value_type::key_type key;
value_type::mapped_type val;
for (size_t i=0; i<N && _is.good(); ++i)
{
bytes += IO::restore( _is, key, _swap );
bytes += IO::restore( _is, val, _swap );
_v[key] = val;
}
return _is.good() ? bytes : 0;
}
};
}
}
namespace {
class OpenMeshTutorials: public OpenMeshBase {
protected:
// This function is called before each test is run
virtual void SetUp() {
// Do some initial stuff with the member data here...
}
// This function is called after all tests are through
virtual void TearDown() {
// Do some final stuff with the member data here...
}
// Member already defined in OpenMeshBase
//Mesh mesh_;
};
/*
* ====================================================================
* Classes for unittests
* ====================================================================
*/
template <class Mesh> class SmootherT
{
public:
typedef typename Mesh::Point cog_t;
typedef OpenMesh::VPropHandleT< cog_t > Property_cog;
public:
// construct with a given mesh
SmootherT(Mesh& _mesh)
: mesh_(_mesh)
{
mesh_.add_property( cog_ );
}
~SmootherT()
{
mesh_.remove_property( cog_ );
}
// smooth mesh _iterations times
void smooth(unsigned int _iterations)
{
for (unsigned int i=0; i < _iterations; ++i)
{
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
ComputeCOG(mesh_, cog_));
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
SetCOG(mesh_, cog_));
}
}
private:
//--- private classes ---
class ComputeCOG
{
public:
ComputeCOG(Mesh& _mesh, Property_cog& _cog)
: mesh_(_mesh), cog_(_cog)
{}
void operator()(const typename Mesh::VertexHandle& _vh)
{
typename Mesh::VertexVertexIter vv_it;
typename Mesh::Scalar valence(0.0);
mesh_.property(cog_, _vh) = typename Mesh::Point(0.0, 0.0, 0.0);
for (vv_it=mesh_.vv_iter(_vh); vv_it.is_valid(); ++vv_it)
{
mesh_.property(cog_, _vh) += mesh_.point( *vv_it );
++valence;
}
mesh_.property(cog_, _vh ) /= valence;
}
private:
Mesh& mesh_;
Property_cog& cog_;
};
class SetCOG
{
public:
SetCOG(Mesh& _mesh, Property_cog& _cog)
: mesh_(_mesh), cog_(_cog)
{}
void operator()(const typename Mesh::VertexHandle& _vh)
{
if (!mesh_.is_boundary(_vh))
mesh_.set_point( _vh, mesh_.property(cog_, _vh) );
}
private:
Mesh& mesh_;
Property_cog& cog_;
};
//--- private elements ---
Mesh& mesh_;
Property_cog cog_;
};
/*
* ====================================================================
* Specify our traits
* ====================================================================
*/
struct MyTraits : public OpenMesh::DefaultTraits
{
HalfedgeAttributes(OpenMesh::Attributes::PrevHalfedge);
};
// Define my personal fancy traits
struct MyFancyTraits : OpenMesh::DefaultTraits
{
// Let Point and Normal be a vector of doubles
typedef OpenMesh::Vec3d Point;
typedef OpenMesh::Vec3d Normal;
// Already defined in OpenMesh::DefaultTraits
// HalfedgeAttributes( OpenMesh::Attributes::PrevHalfedge );
// Uncomment next line to disable attribute PrevHalfedge
// HalfedgeAttributes( OpenMesh::Attributes::None );
//
// or
//
// HalfedgeAttributes( 0 );
};
struct MyTraitsWithCOG : public OpenMesh::DefaultTraits
{
// store barycenter of neighbors in this member
VertexTraits
{
private:
Point cog_;
public:
VertexT() : cog_( Point(0.0f, 0.0f, 0.0f ) ) { }
const Point& cog() const { return cog_; }
void set_cog(const Point& _p) { cog_ = _p; }
};
};
struct MyTraitsWithStatus : public OpenMesh::DefaultTraits
{
VertexAttributes(OpenMesh::Attributes::Status);
FaceAttributes(OpenMesh::Attributes::Status);
EdgeAttributes(OpenMesh::Attributes::Status);
};
/*
* ====================================================================
* Specify our meshes
* ====================================================================
*/
typedef OpenMesh::PolyMesh_ArrayKernelT<> MyMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraits> MyMeshWithTraits;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraits> MyTriMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyFancyTraits> MyFancyTriMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraitsWithCOG> MyTriMeshWithCOG;
typedef OpenMesh::PolyMesh_ArrayKernelT<MyTraitsWithStatus> MyMeshWithStatus;
/*
* ====================================================================
* Define tests below
* ====================================================================
*/
/*
*/
TEST_F(OpenMeshTutorials, building_a_cube) {
MyMesh mesh;
// generate vertices
MyMesh::VertexHandle vhandle[8];
vhandle[0] = mesh.add_vertex(MyMesh::Point(-1, -1, 1));
vhandle[1] = mesh.add_vertex(MyMesh::Point( 1, -1, 1));
vhandle[2] = mesh.add_vertex(MyMesh::Point( 1, 1, 1));
vhandle[3] = mesh.add_vertex(MyMesh::Point(-1, 1, 1));
vhandle[4] = mesh.add_vertex(MyMesh::Point(-1, -1, -1));
vhandle[5] = mesh.add_vertex(MyMesh::Point( 1, -1, -1));
vhandle[6] = mesh.add_vertex(MyMesh::Point( 1, 1, -1));
vhandle[7] = mesh.add_vertex(MyMesh::Point(-1, 1, -1));
// generate (quadrilateral) faces
std::vector<MyMesh::VertexHandle> face_vhandles;
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[3]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[4]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[4]);
face_vhandles.push_back(vhandle[5]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[6]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[7]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[4]);
mesh.add_face(face_vhandles);
bool ok = OpenMesh::IO::write_mesh(mesh, "output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'output.off'";
}
TEST_F(OpenMeshTutorials, using_iterators_and_circulators) {
MyMesh mesh;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
// this vector stores the computed centers of gravity
std::vector<MyMesh::Point> cogs;
std::vector<MyMesh::Point>::iterator cog_it;
cogs.reserve(mesh.n_vertices());
// smoothing mesh N times
MyMesh::VertexIter v_it, v_end(mesh.vertices_end());
MyMesh::VertexVertexIter vv_it;
MyMesh::Point cog;
MyMesh::Scalar valence;
unsigned int i, N(100);
for (i=0; i < N; ++i)
{
cogs.clear();
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
{
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it = mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
{
cog += mesh.point( *vv_it );
++valence;
}
cogs.push_back(cog / valence);
}
for (v_it = mesh.vertices_begin(), cog_it = cogs.begin();
v_it != v_end; ++v_it, ++cog_it)
if ( !mesh.is_boundary( *v_it ) )
mesh.set_point( *v_it, *cog_it );
}
// write mesh
ok = OpenMesh::IO::write_mesh(mesh, "smoothed_output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_output.off'";
}
TEST_F(OpenMeshTutorials, using_custom_properties) {
MyMesh mesh;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
// this vertex property stores the computed centers of gravity
OpenMesh::VPropHandleT<MyMesh::Point> cogs;
mesh.add_property(cogs);
// smoothing mesh N times
MyMesh::VertexIter v_it, v_end(mesh.vertices_end());
MyMesh::VertexVertexIter vv_it;
MyMesh::Point cog;
MyMesh::Scalar valence;
unsigned int i, N(100);
for (i=0; i < N; ++i)
{
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
{
mesh.property(cogs,*v_it).vectorize(0.0f);
valence = 0.0;
for (vv_it = mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
{
mesh.property(cogs,*v_it) += mesh.point( *vv_it );
++valence;
}
mesh.property(cogs,*v_it) /= valence;
}
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
if ( !mesh.is_boundary( *v_it ) )
mesh.set_point( *v_it, mesh.property(cogs,*v_it) );
}
// write mesh
ok = OpenMesh::IO::write_mesh(mesh, "smoothed_custom_properties_output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_custom_properties_output.off'";
}
TEST_F(OpenMeshTutorials, using_STL_algorithms) {
MyMeshWithTraits mesh;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
SmootherT<MyMeshWithTraits> smoother(mesh);
smoother.smooth(100);
// write mesh
ok = OpenMesh::IO::write_mesh(mesh, "smoothed_STL_output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_STL_output.off'";
}
TEST_F(OpenMeshTutorials, using_standard_properties) {
MyTriMesh mesh;
mesh.request_vertex_normals();
EXPECT_TRUE(mesh.has_vertex_normals()) << "Standard vertex property 'Normals' not available";
OpenMesh::IO::Options opt;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off", opt);
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
// If the file did not provide vertex normals, then calculate them
if ( !opt.check( OpenMesh::IO::Options::VertexNormal ) )
{
// we need face normals to update the vertex normals
mesh.request_face_normals();
// let the mesh update the normals
mesh.update_normals();
// dispose the face normals, as we don't need them anymore
mesh.release_face_normals();
}
// move all vertices one unit length along it's normal direction
for (MyMesh::VertexIter v_it = mesh.vertices_begin();
v_it != mesh.vertices_end(); ++v_it)
{
mesh.set_point( *v_it, mesh.point(*v_it)+mesh.normal(*v_it) );
}
// don't need the normals anymore? Remove them!
mesh.release_vertex_normals();
// just check if it really works
EXPECT_FALSE(mesh.has_vertex_normals()) << "Shouldn't have any vertex normals anymore";
}
TEST_F(OpenMeshTutorials, using_mesh_attributes_and_traits) {
MyFancyTriMesh mesh;
// Just make sure that point element type is double
EXPECT_TRUE(typeid( OpenMesh::vector_traits<MyFancyTriMesh::Point>::value_type ) ==
typeid(double)) << "Data type is wrong";
// Make sure that normal element type is double
EXPECT_TRUE(typeid( OpenMesh::vector_traits<MyFancyTriMesh::Normal>::value_type ) ==
typeid(double)) << "Data type is wrong";
// Add vertex normals as default property (ref. previous tutorial)
mesh.request_vertex_normals();
// Add face normals as default property
mesh.request_face_normals();
// load a mesh
OpenMesh::IO::Options opt;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off", opt);
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
// If the file did not provide vertex normals, then calculate them
if ( !opt.check( OpenMesh::IO::Options::VertexNormal ) &&
mesh.has_face_normals() && mesh.has_vertex_normals() )
{
// let the mesh update the normals
mesh.update_normals();
}
// move all vertices one unit length along it's normal direction
for (MyMesh::VertexIter v_it = mesh.vertices_begin();
v_it != mesh.vertices_end(); ++v_it)
{
mesh.set_point( *v_it, mesh.point(*v_it)+mesh.normal(*v_it) );
}
}
TEST_F(OpenMeshTutorials, extending_the_mesh_using_traits) {
MyTriMeshWithCOG mesh;
bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");
EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";
// smoothing mesh N times
MyTriMeshWithCOG::VertexIter v_it, v_end(mesh.vertices_end());
MyTriMeshWithCOG::VertexVertexIter vv_it;
MyTriMeshWithCOG::Point cog;
MyTriMeshWithCOG::Scalar valence;
unsigned int i, N(100);
for (i=0; i < N; ++i)
{
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
{
cog[0] = cog[1] = cog[2] = valence = 0.0;
for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it)
{
cog += mesh.point( *vv_it );
++valence;
}
mesh.data(*v_it).set_cog(cog / valence);
}
for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
if (!mesh.is_boundary(*v_it))
mesh.set_point( *v_it, mesh.data(*v_it).cog());
}
// write mesh
ok = OpenMesh::IO::write_mesh(mesh, "smoothed_extended_output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_extended_output.off'";
}
/*
TEST_F(OpenMeshTutorials, deleting_geometry_elements) {
MyMeshWithStatus mesh;
// generate vertices
MyMeshWithStatus::VertexHandle vhandle[8];
MyMeshWithStatus::FaceHandle fhandle[6];
vhandle[0] = mesh.add_vertex(MyMesh::Point(-1, -1, 1));
vhandle[1] = mesh.add_vertex(MyMesh::Point( 1, -1, 1));
vhandle[2] = mesh.add_vertex(MyMesh::Point( 1, 1, 1));
vhandle[3] = mesh.add_vertex(MyMesh::Point(-1, 1, 1));
vhandle[4] = mesh.add_vertex(MyMesh::Point(-1, -1, -1));
vhandle[5] = mesh.add_vertex(MyMesh::Point( 1, -1, -1));
vhandle[6] = mesh.add_vertex(MyMesh::Point( 1, 1, -1));
vhandle[7] = mesh.add_vertex(MyMesh::Point(-1, 1, -1));
// generate (quadrilateral) faces
std::vector<MyMesh::VertexHandle> tmp_face_vhandles;
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[0]);
tmp_face_vhandles.push_back(vhandle[1]);
tmp_face_vhandles.push_back(vhandle[2]);
tmp_face_vhandles.push_back(vhandle[3]);
fhandle[0] = mesh.add_face(tmp_face_vhandles);
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[7]);
tmp_face_vhandles.push_back(vhandle[6]);
tmp_face_vhandles.push_back(vhandle[5]);
tmp_face_vhandles.push_back(vhandle[4]);
fhandle[1] = mesh.add_face(tmp_face_vhandles);
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[1]);
tmp_face_vhandles.push_back(vhandle[0]);
tmp_face_vhandles.push_back(vhandle[4]);
tmp_face_vhandles.push_back(vhandle[5]);
fhandle[2] = mesh.add_face(tmp_face_vhandles);
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[2]);
tmp_face_vhandles.push_back(vhandle[1]);
tmp_face_vhandles.push_back(vhandle[5]);
tmp_face_vhandles.push_back(vhandle[6]);
fhandle[3] = mesh.add_face(tmp_face_vhandles);
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[3]);
tmp_face_vhandles.push_back(vhandle[2]);
tmp_face_vhandles.push_back(vhandle[6]);
tmp_face_vhandles.push_back(vhandle[7]);
fhandle[4] = mesh.add_face(tmp_face_vhandles);
tmp_face_vhandles.clear();
tmp_face_vhandles.push_back(vhandle[0]);
tmp_face_vhandles.push_back(vhandle[3]);
tmp_face_vhandles.push_back(vhandle[7]);
tmp_face_vhandles.push_back(vhandle[4]);
fhandle[5] = mesh.add_face(tmp_face_vhandles);
// And now delete all faces and vertices
// except face (vh[7], vh[6], vh[5], vh[4])
// whose handle resides in fhandle[1]
EXPECT_FALSE(mesh.status(fhandle[0]).deleted()) << "face shouldn't be deleted";
EXPECT_FALSE(mesh.status(fhandle[1]).deleted()) << "face shouldn't be deleted";
EXPECT_FALSE(mesh.status(fhandle[2]).deleted()) << "face shouldn't be deleted";
EXPECT_FALSE(mesh.status(fhandle[3]).deleted()) << "face shouldn't be deleted";
EXPECT_FALSE(mesh.status(fhandle[4]).deleted()) << "face shouldn't be deleted";
EXPECT_FALSE(mesh.status(fhandle[5]).deleted()) << "face shouldn't be deleted";
// Delete face 0
mesh.delete_face(fhandle[0], false);
// ... face 2
mesh.delete_face(fhandle[2], false);
// ... face 3
mesh.delete_face(fhandle[3], false);
// ... face 4
mesh.delete_face(fhandle[4], false);
// ... face 5
mesh.delete_face(fhandle[5], false);
EXPECT_TRUE(mesh.status(fhandle[0]).deleted()) << "face should be deleted";
EXPECT_FALSE(mesh.status(fhandle[1]).deleted()) << "face shouldn't be deleted";
EXPECT_TRUE(mesh.status(fhandle[2]).deleted()) << "face should be deleted";
EXPECT_TRUE(mesh.status(fhandle[3]).deleted()) << "face should be deleted";
EXPECT_TRUE(mesh.status(fhandle[4]).deleted()) << "face should be deleted";
EXPECT_TRUE(mesh.status(fhandle[5]).deleted()) << "face should be deleted";
// If isolated vertices result in a face deletion
// they have to be deleted manually. If you want this
// to happen automatically, change the second parameter
// to true.
// Now delete the isolated vertices 0, 1, 2 and 3
EXPECT_FALSE(mesh.status(vhandle[0]).deleted()) << "vertex shouldn't be deleted";
EXPECT_FALSE(mesh.status(vhandle[1]).deleted()) << "vertex shouldn't be deleted";
EXPECT_FALSE(mesh.status(vhandle[2]).deleted()) << "vertex shouldn't be deleted";
EXPECT_FALSE(mesh.status(vhandle[3]).deleted()) << "vertex shouldn't be deleted";
mesh.delete_vertex(vhandle[0], false);
mesh.delete_vertex(vhandle[1], false);
mesh.delete_vertex(vhandle[2], false);
mesh.delete_vertex(vhandle[3], false);
EXPECT_TRUE(mesh.status(vhandle[0]).deleted()) << "vertex should be deleted";
EXPECT_TRUE(mesh.status(vhandle[1]).deleted()) << "vertex should be deleted";
EXPECT_TRUE(mesh.status(vhandle[2]).deleted()) << "vertex should be deleted";
EXPECT_TRUE(mesh.status(vhandle[3]).deleted()) << "vertex should be deleted";
// Delete all elements that are marked as deleted
// from memory.
mesh.garbage_collection();
// write mesh
bool ok = OpenMesh::IO::write_mesh(mesh, "deleted_output.off");
EXPECT_TRUE(ok) << "Cannot write mesh to file 'deleted_output.off'";
}
*/
TEST_F(OpenMeshTutorials, storing_custom_properties) {
MyMesh mesh;
// generate a geometry
generate_cube<MyMesh>(mesh);
// define some custom properties
OpenMesh::VPropHandleT<float> vprop_float;
OpenMesh::EPropHandleT<bool> eprop_bool;
OpenMesh::FPropHandleT<std::string> fprop_string;
OpenMesh::HPropHandleT<MyData> hprop_mydata;
OpenMesh::MPropHandleT<MyMap> mprop_map;
// registrate them at the mesh object
mesh.add_property(vprop_float, "vprop_float");
mesh.add_property(eprop_bool, "eprop_bool");
mesh.add_property(fprop_string, "fprop_string");
mesh.add_property(hprop_mydata, "hprop_mydata");
mesh.add_property(mprop_map, "mprop_map");
//fill the props
fill_props(mesh, vprop_float);
fill_props(mesh, eprop_bool);
fill_props(mesh, fprop_string);
fill_props(mesh, hprop_mydata);
fill_props(mesh, mprop_map);
EXPECT_TRUE(fill_props(mesh, vprop_float, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, eprop_bool, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, fprop_string, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, hprop_mydata, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, mprop_map, true)) << "property not filled correctly";
//Set persistent flag
mesh.property(vprop_float).set_persistent(true);
EXPECT_TRUE(mesh.property(vprop_float).persistent()) << "property should be persistent";
mesh.property(eprop_bool).set_persistent(true);
EXPECT_TRUE(mesh.property(eprop_bool).persistent()) << "property should be persistent";
mesh.property(fprop_string).set_persistent(true);
EXPECT_TRUE(mesh.property(fprop_string).persistent()) << "property should be persistent";
mesh.property(hprop_mydata).set_persistent(true);
EXPECT_TRUE(mesh.property(hprop_mydata).persistent()) << "property should be persistent";
mesh.mproperty(mprop_map).set_persistent(true);
EXPECT_TRUE(mesh.mproperty(mprop_map).persistent()) << "property should be persistent";
// write mesh
bool ok = OpenMesh::IO::write_mesh( mesh, "persistence-check.om" );
EXPECT_TRUE(ok) << "Cannot write mesh to file 'persistent-check.om'";
// clear mesh
mesh.clear();
//Read back mesh
ok = OpenMesh::IO::read_mesh( mesh, "persistence-check.om" );
EXPECT_TRUE(ok) << "Cannot read mesh from file 'persistent-check.om'";
// check props
EXPECT_TRUE(fill_props(mesh, vprop_float, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, eprop_bool, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, fprop_string, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, hprop_mydata, true)) << "property not filled correctly";
EXPECT_TRUE(fill_props(mesh, mprop_map, true)) << "property not filled correctly";
}
/*Testcase for code snippet from flipping edges in triangle meshes
* */
TEST_F(OpenMeshTutorials, flipping_edges) {
Mesh mesh;
// Add some vertices
Mesh::VertexHandle vhandle[4];
vhandle[0] = mesh.add_vertex(MyMesh::Point(0, 0, 0));
vhandle[1] = mesh.add_vertex(MyMesh::Point(0, 1, 0));
vhandle[2] = mesh.add_vertex(MyMesh::Point(1, 1, 0));
vhandle[3] = mesh.add_vertex(MyMesh::Point(1, 0, 0));
// Add two faces
std::vector<Mesh::VertexHandle> face_vhandles;
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[3]);
mesh.add_face(face_vhandles);
// Now the edge adjacent to the two faces connects
// vertex vhandle[0] and vhandle[2].
// Find this edge and then flip it
for(Mesh::EdgeIter it = mesh.edges_begin(); it != mesh.edges_end(); ++it) {
if(!mesh.is_boundary(*it)) {
// Flip edge
EXPECT_EQ(vhandle[2].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,0)).idx()) << "expected vertex handle 2!" ;
EXPECT_EQ(vhandle[0].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,1)).idx()) << "expected vertex handle 0!" ;
mesh.flip(*it);
EXPECT_EQ(vhandle[1].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,0)).idx()) << "expected vertex handle 1 (did the flip work?)!" ;
EXPECT_EQ(vhandle[3].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,1)).idx()) << "expected vertex handle 3 (did the flip work?)!" ;
}
}
// The edge now connects vertex vhandle[1] and vhandle[3].
}
/*Testcase for code snippet from collapsing edges in triangle meshes
* */
TEST_F(OpenMeshTutorials, collapsing_edges) {
PolyMesh mesh;
mesh.request_vertex_status();
mesh.request_edge_status();
// Add some vertices as in the illustration above
PolyMesh::VertexHandle vhandle[7];
vhandle[0] = mesh.add_vertex(MyMesh::Point(-1, 1, 0));
vhandle[1] = mesh.add_vertex(MyMesh::Point(-1, 3, 0));
vhandle[2] = mesh.add_vertex(MyMesh::Point(0, 0, 0));
vhandle[3] = mesh.add_vertex(MyMesh::Point(0, 2, 0));
vhandle[4] = mesh.add_vertex(MyMesh::Point(0, 4, 0));
vhandle[5] = mesh.add_vertex(MyMesh::Point(1, 1, 0));
vhandle[6] = mesh.add_vertex(MyMesh::Point(1, 3, 0));
// Add three quad faces
std::vector<PolyMesh::VertexHandle> face_vhandles;
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[3]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[4]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[5]);
mesh.add_face(face_vhandles);
// Now find the edge between vertex vhandle[2]
// and vhandle[3]
for(PolyMesh::HalfedgeIter it = mesh.halfedges_begin(); it != mesh.halfedges_end(); ++it) {
if( mesh.to_vertex_handle(*it) == vhandle[3] &&
mesh.from_vertex_handle(*it) == vhandle[2])
{
// Collapse edge
mesh.collapse(*it);
break;
}
}
// Our mesh now looks like in the illustration above after the collapsing.
}
}