Files
openmesh/src/OpenMesh/Core/Mesh/CirculatorsT.hh

1864 lines
53 KiB
C++
Raw Normal View History

/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2012 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see <http://www.gnu.org/licenses/>. *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
#ifndef OPENMESH_CIRCULATORS_HH
#define OPENMESH_CIRCULATORS_HH
//=============================================================================
//
// Vertex and Face circulators for PolyMesh/TriMesh
//
//=============================================================================
//== INCLUDES =================================================================
#include <OpenMesh/Core/System/config.h>
#include <cassert>
#include <cstddef>
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace Iterators {
template<class Mesh, class CenterEntityHandle>
class GenericCirculator_CenterEntityFnsT {
public:
static void increment(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter);
static void decrement(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter);
};
template<class Mesh>
class GenericCirculator_CenterEntityFnsT<Mesh, typename Mesh::VertexHandle> {
public:
inline static void increment(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
heh = mesh->cw_rotated_halfedge_handle(heh);
if (heh == start) ++lap_counter;
}
inline static void decrement(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
if (heh == start) --lap_counter;
heh = mesh->ccw_rotated_halfedge_handle(heh);
}
};
template<class Mesh>
class GenericCirculator_CenterEntityFnsT<Mesh, typename Mesh::FaceHandle> {
public:
inline static void increment(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
heh = mesh->next_halfedge_handle(heh);
if (heh == start) ++lap_counter;
}
inline static void decrement(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
if (heh == start) --lap_counter;
heh = mesh->prev_halfedge_handle(heh);
}
};
template<class Mesh, class CenterEntityHandle, class ValueHandle>
class GenericCirculator_ValueHandleFnsT {
public:
inline static bool is_valid(const Mesh *mesh, const typename Mesh::HalfedgeHandle &heh, const typename Mesh::HalfedgeHandle &start, const int &lap_counter) {
return heh.is_valid() && ((start != heh) || (lap_counter == 0));
}
inline static void init(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {};
inline static void increment(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
GenericCirculator_CenterEntityFnsT<Mesh, CenterEntityHandle>::increment(mesh, heh, start, lap_counter);
}
inline static void decrement(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
GenericCirculator_CenterEntityFnsT<Mesh, CenterEntityHandle>::decrement(mesh, heh, start, lap_counter);
}
};
template<class Mesh, class CenterEntityHandle>
class GenericCirculator_ValueHandleFnsT<Mesh, CenterEntityHandle, typename Mesh::FaceHandle> {
public:
inline static bool is_valid(const Mesh *mesh, const typename Mesh::HalfedgeHandle &heh, const typename Mesh::HalfedgeHandle &start, const int &lap_counter) {
return heh.is_valid() && ((start != heh) || (lap_counter == 0));
}
inline static void init(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
if (is_valid(mesh, heh, start, lap_counter) && !mesh->face_handle(heh).is_valid())
increment(mesh, heh, start, lap_counter);
};
inline static void increment(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
do {
GenericCirculator_CenterEntityFnsT<Mesh, CenterEntityHandle>::increment(mesh, heh, start, lap_counter);
} while (is_valid(mesh, heh, start, lap_counter) && !mesh->face_handle(heh).is_valid());
}
inline static void decrement(const Mesh *mesh, typename Mesh::HalfedgeHandle &heh, typename Mesh::HalfedgeHandle &start, int &lap_counter) {
do {
GenericCirculator_CenterEntityFnsT<Mesh, CenterEntityHandle>::decrement(mesh, heh, start, lap_counter);
} while (is_valid(mesh, heh, start, lap_counter) && !mesh->face_handle(heh).is_valid());
}
};
template<class Mesh>
class GenericCirculatorBaseT {
public:
typedef const Mesh* mesh_ptr;
typedef const Mesh& mesh_ref;
public:
GenericCirculatorBaseT() : mesh_(0), lap_counter_(0) {}
GenericCirculatorBaseT(mesh_ref mesh, HalfedgeHandle heh, bool end = false) :
mesh_(&mesh), start_(heh), heh_(heh), lap_counter_(static_cast<int>(end)) {}
GenericCirculatorBaseT(const GenericCirculatorBaseT &rhs) :
mesh_(rhs.mesh_), start_(rhs.start_), heh_(rhs.heh_), lap_counter_(rhs.lap_counter_) {}
inline typename Mesh::FaceHandle toFaceHandle() const {
return mesh_->face_handle(heh_);
}
inline typename Mesh::EdgeHandle toEdgeHandle() const {
return mesh_->edge_handle(heh_);
}
inline typename Mesh::HalfedgeHandle toHalfedgeHandle() const {
return heh_;
}
inline typename Mesh::HalfedgeHandle toOppositeHalfedgeHandle() const {
return mesh_->opposite_halfedge_handle(heh_);
}
inline typename Mesh::VertexHandle toVertexHandle() const {
return mesh_->to_vertex_handle(heh_);
}
inline GenericCirculatorBaseT &operator=(const GenericCirculatorBaseT &rhs) {
mesh_ = rhs.mesh_;
start_ = rhs.start_;
heh_ = rhs.heh_;
lap_counter_ = rhs.lap_counter_;
return *this;
}
inline bool operator==(const GenericCirculatorBaseT &rhs) const {
return mesh_ == rhs.mesh_ && start_ == rhs.start_ && heh_ == rhs.heh_ && lap_counter_ == rhs.lap_counter_;
}
inline bool operator!=(const GenericCirculatorBaseT &rhs) const {
return !operator==(rhs);
}
protected:
mesh_ptr mesh_;
typename Mesh::HalfedgeHandle start_, heh_;
int lap_counter_;
};
template<class Mesh, class CenterEntityHandle, class ValueHandle,
// void (GenericCirculatorBaseT<Mesh>::*Increment)(),
// void (GenericCirculatorBaseT<Mesh>::*Decrement)(),
ValueHandle (GenericCirculatorBaseT<Mesh>::*Handle2Value)() const>
class GenericCirculatorT : protected GenericCirculatorBaseT<Mesh> {
public:
typedef std::ptrdiff_t difference_type;
typedef ValueHandle value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef std::bidirectional_iterator_tag iterator_category;
typedef typename GenericCirculatorBaseT<Mesh>::mesh_ptr mesh_ptr;
typedef typename GenericCirculatorBaseT<Mesh>::mesh_ref mesh_ref;
typedef GenericCirculator_ValueHandleFnsT<Mesh, CenterEntityHandle, ValueHandle> GenericCirculator_ValueHandleFns;
public:
GenericCirculatorT() {}
GenericCirculatorT(mesh_ref mesh, CenterEntityHandle start, bool end = false) :
GenericCirculatorBaseT<Mesh>(mesh, mesh.halfedge_handle(start), end) {
GenericCirculator_ValueHandleFns::init(this->mesh_, this->heh_, this->start_, this->lap_counter_);
}
GenericCirculatorT(mesh_ref mesh, HalfedgeHandle heh, bool end = false) :
GenericCirculatorBaseT<Mesh>(mesh, heh, end) {
GenericCirculator_ValueHandleFns::init(this->mesh_, this->heh_, this->start_, this->lap_counter_);
}
GenericCirculatorT(const GenericCirculatorT &rhs) : GenericCirculatorBaseT<Mesh>(rhs) {}
GenericCirculatorT& operator++() {
assert(this->mesh_);
GenericCirculator_ValueHandleFns::increment(this->mesh_, this->heh_, this->start_, this->lap_counter_);
return *this;
}
GenericCirculatorT& operator--() {
assert(this->mesh_);
GenericCirculator_ValueHandleFns::decrement(this->mesh_, this->heh_, this->start_, this->lap_counter_);
return *this;
}
/// Post-increment
GenericCirculatorT operator++(int) {
assert(this->mesh_);
GenericCirculatorT cpy(*this);
++(*this);
return cpy;
}
/// Post-decrement
GenericCirculatorT operator--(int) {
assert(this->mesh_);
GenericCirculatorT cpy(*this);
--(*this);
return cpy;
}
/// Standard dereferencing operator.
value_type operator*() const {
return (this->*Handle2Value)();
}
/// Standard pointer operator.
value_type operator->() const {
return (this->*Handle2Value)();
}
GenericCirculatorT &operator=(const GenericCirculatorT &rhs) {
GenericCirculatorBaseT<Mesh>::operator=(rhs);
return *this;
};
bool operator==(const GenericCirculatorT &rhs) const {
return GenericCirculatorBaseT<Mesh>::operator==(rhs);
}
bool operator!=(const GenericCirculatorT &rhs) const {
return GenericCirculatorBaseT<Mesh>::operator!=(rhs);
}
bool is_valid() const {
return GenericCirculator_ValueHandleFns::is_valid(this->mesh_, this->heh_, this->start_, this->lap_counter_);
}
DEPRECATED("current_halfedge_handle() is an implementation detail and should not be accessed from outside the iterator class.")
const HalfedgeHandle &current_halfedge_handle() const {
return this->heh_;
}
DEPRECATED("Do not use this error prone implicit cast. Compare to end-iterator, instead.")
operator bool() const {
return is_valid();
}
/// Return the handle of the current target.
DEPRECATED("This function clutters your code. Use dereferencing operators -> and * instead.")
value_type handle() const {
return **this;
}
/// Cast to the handle of the current target.
DEPRECATED("Implicit casts of iterators are unsafe. Use dereferencing operators -> and * instead.")
operator value_type() const {
return **this;
}
};
//== FORWARD DECLARATIONS =====================================================
template <class Mesh> class FaceVertexIterT;
template <class Mesh> class FaceHalfedgeIterT;
template <class Mesh> class FaceEdgeIterT;
template <class Mesh> class FaceFaceIterT;
template <class Mesh> class ConstFaceVertexIterT;
template <class Mesh> class ConstFaceHalfedgeIterT;
template <class Mesh> class ConstFaceEdgeIterT;
template <class Mesh> class ConstFaceFaceIterT;
//== CLASS DEFINITION =========================================================
/** \class FaceVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
FaceVertexIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceVertexIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
FaceVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
FaceVertexIterT(const FaceVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
FaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceVertexIterT(const FaceVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
FaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const FaceVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceVertexIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceVertexIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
ConstFaceVertexIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceVertexIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
ConstFaceVertexIterT(const ConstFaceVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
ConstFaceVertexIterT& operator=(const ConstFaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceVertexIterT(const FaceVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
ConstFaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const ConstFaceVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceVertexIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceVertexIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
FaceHalfedgeIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceHalfedgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
FaceHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
FaceHalfedgeIterT(const FaceHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
FaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceHalfedgeIterT(const FaceHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
FaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const FaceHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceHalfedgeIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceHalfedgeIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
ConstFaceHalfedgeIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceHalfedgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
ConstFaceHalfedgeIterT(const ConstFaceHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
ConstFaceHalfedgeIterT& operator=(const ConstFaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceHalfedgeIterT(const FaceHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
ConstFaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const ConstFaceHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceHalfedgeIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceHalfedgeIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
FaceEdgeIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceEdgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
FaceEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
FaceEdgeIterT(const FaceEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
FaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceEdgeIterT(const FaceEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
FaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const FaceEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceEdgeIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceEdgeIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
ConstFaceEdgeIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceEdgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ ; }
/// Copy constructor
ConstFaceEdgeIterT(const ConstFaceEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// Assignment operator
ConstFaceEdgeIterT& operator=(const ConstFaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceEdgeIterT(const FaceEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ ; }
/// assign from non-const circulator
ConstFaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const ConstFaceEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceEdgeIterT& operator++() {
assert(mesh_);
heh_=mesh_->next_halfedge_handle(heh_);
if(heh_ == start_) lap_counter_++;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceEdgeIterT& operator--() {
assert(mesh_);
if(heh_ == start_) lap_counter_--;
heh_=mesh_->prev_halfedge_handle(heh_);
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
FaceFaceIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceFaceIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
FaceFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
FaceFaceIterT(const FaceFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
FaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceFaceIterT(const FaceFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
FaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const FaceFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceFaceIterT& operator++() {
assert(mesh_);
do { heh_=mesh_->next_halfedge_handle(heh_); if(heh_ == start_) lap_counter_++; } while ((*this) && (!handle().is_valid()));
return *this;
}
/// Pre-Decrement (next ccw target)
FaceFaceIterT& operator--() {
assert(mesh_);
do { if(heh_ == start_) lap_counter_--; heh_=mesh_->prev_halfedge_handle(heh_); } while ((*this) && (!handle().is_valid()));
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
ConstFaceFaceIterT() : mesh_(0), lap_counter_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceFaceIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start, bool _end = false) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
lap_counter_(_end)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
ConstFaceFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh, bool _end = false) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
lap_counter_(_end)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
ConstFaceFaceIterT(const ConstFaceFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
ConstFaceFaceIterT& operator=(const ConstFaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceFaceIterT(const FaceFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
lap_counter_(_rhs.lap_counter_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
ConstFaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
lap_counter_ = _rhs.lap_counter_;
return *this;
}
#else
friend class ConstFaceFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(lap_counter_ == _rhs.lap_counter_));
}
/// Not equal ?
bool operator!=(const ConstFaceFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceFaceIterT& operator++() {
assert(mesh_);
do { heh_=mesh_->next_halfedge_handle(heh_); if(heh_ == start_) lap_counter_++; } while ((*this) && (!handle().is_valid()));;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceFaceIterT& operator--() {
assert(mesh_);
do { if(heh_ == start_) lap_counter_--; heh_=mesh_->prev_halfedge_handle(heh_); } while ((*this) && (!handle().is_valid()));;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (lap_counter_ == 0));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
int lap_counter_;
};
//=============================================================================
} // namespace Iterators
} // namespace OpenMesh
//=============================================================================
#endif
//=============================================================================