Files
openmesh/src/OpenMesh/Tools/Subdivider/Uniform/Composite/CompositeT.cc

1296 lines
37 KiB
C++
Raw Normal View History

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
/** \file Uniform/Composite/CompositeT.cc
*/
//=============================================================================
//
// CLASS CompositeT - IMPLEMENTATION
//
//=============================================================================
#ifndef OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC
#define OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC
//== INCLUDES =================================================================
#include <vector>
#include <OpenMesh/Tools/Subdivider/Uniform/Composite/CompositeT.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Uniform { // BEGIN_NS_UNIFORM
//== IMPLEMENTATION ==========================================================
template <typename MeshType, typename RealType>
bool CompositeT<MeshType,RealType>::prepare( MeshType& _m )
{
// store mesh for later usage in subdivide(), cleanup() and all rules.
p_mesh_ = &_m;
typename MeshType::VertexIter v_it(_m.vertices_begin());
for (; v_it != _m.vertices_end(); ++v_it)
_m.data(*v_it).set_position(_m.point(*v_it));
return true;
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::Tvv3()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexHandle vh;
typename MeshType::FaceIter f_it;
typename MeshType::EdgeIter e_it;
typename MeshType::VertexIter v_it;
typename MeshType::Point zero_point(0.0, 0.0, 0.0);
size_t n_edges, n_faces, n_vertices, j;
// Store number of original edges
n_faces = mesh_.n_faces();
n_edges = mesh_.n_edges();
n_vertices = mesh_.n_vertices();
// reserve enough memory for iterator
mesh_.reserve(n_vertices + n_faces, n_edges + 3 * n_faces, 3 * n_faces);
// set new positions for vertices
v_it = mesh_.vertices_begin();
for (j = 0; j < n_vertices; ++j) {
2016-11-07 14:30:14 +01:00
mesh_.data(*v_it).set_position(mesh_.data(*v_it).position() * static_cast<typename MeshType::Point::value_type>(3.0) );
++v_it;
}
// Split each face
f_it = mesh_.faces_begin();
for (j = 0; j < n_faces; ++j) {
vh = mesh_.add_vertex(zero_point);
mesh_.data(vh).set_position(zero_point);
mesh_.split(*f_it, vh);
++f_it;
}
// Flip each old edge
std::vector<typename MeshType::EdgeHandle> edge_vector;
edge_vector.clear();
e_it = mesh_.edges_begin();
for (j = 0; j < n_edges; ++j) {
if (mesh_.is_flip_ok(*e_it)) {
mesh_.flip(*e_it);
} else {
edge_vector.push_back(*e_it);
}
++e_it;
}
// split all boundary edges
while (!edge_vector.empty()) {
vh = mesh_.add_vertex(zero_point);
mesh_.data(vh).set_position(zero_point);
mesh_.split(edge_vector.back(), vh);
edge_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::Tvv4()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexHandle vh;
typename MeshType::FaceIter f_it;
typename MeshType::EdgeIter e_it;
typename MeshType::VertexIter v_it;
typename MeshType::Point zero_point(0.0, 0.0, 0.0);
size_t n_edges, n_faces, n_vertices, j;
// Store number of original edges
n_faces = mesh_.n_faces();
n_edges = mesh_.n_edges();
n_vertices = mesh_.n_vertices();
// reserve memory ahead for the succeeding operations
mesh_.reserve(n_vertices + n_edges, 2 * n_edges + 3 * n_faces, 4 * n_faces);
// set new positions for vertices
v_it = mesh_.vertices_begin();
for (j = 0; j < n_vertices; ++j) {
2016-11-07 14:30:14 +01:00
mesh_.data(*v_it).set_position(mesh_.data(*v_it).position() * static_cast<typename MeshType::Point::value_type>(4.0) );
++v_it;
}
// Split each edge
e_it = mesh_.edges_begin();
for (j = 0; j < n_edges; ++j) {
vh = split_edge(mesh_.halfedge_handle(*e_it, 0));
mesh_.data(vh).set_position(zero_point);
++e_it;
}
// Corner Cutting of Each Face
f_it = mesh_.faces_begin();
for (j = 0; j < n_faces; ++j) {
typename MeshType::HalfedgeHandle heh1(mesh_.halfedge_handle(*f_it));
typename MeshType::HalfedgeHandle heh2(mesh_.next_halfedge_handle(mesh_.next_halfedge_handle(heh1)));
typename MeshType::HalfedgeHandle heh3(mesh_.next_halfedge_handle(mesh_.next_halfedge_handle(heh2)));
// Cutting off every corner of the 6_gon
corner_cutting(heh1);
corner_cutting(heh2);
corner_cutting(heh3);
++f_it;
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::Tfv()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexHandle vh;
typename MeshType::FaceIter f_it;
typename MeshType::EdgeIter e_it;
typename MeshType::VertexIter v_it;
typename MeshType::VertexFaceIter vf_it;
typename MeshType::FaceFaceIter ff_it;
typename MeshType::Point cog;
const typename MeshType::Point zero_point(0.0, 0.0, 0.0);
size_t n_edges, n_faces, n_vertices, j, valence;
// Store number of original edges
n_faces = mesh_.n_faces();
n_edges = mesh_.n_edges();
n_vertices = mesh_.n_vertices();
// reserve enough space for iterator
mesh_.reserve(n_vertices + n_faces, n_edges + 3 * n_faces, 3 * n_faces);
// set new positions for vertices
v_it = mesh_.vertices_begin();
for (j = 0; j < n_vertices; ++j) {
valence = 0;
cog = zero_point;
for (vf_it = mesh_.vf_iter(*v_it); vf_it; ++vf_it) {
++valence;
cog += vf_it->position();
}
cog /= valence;
v_it->set_position(cog);
++v_it;
}
// Split each face, insert new vertex and calculate position
f_it = mesh_.faces_begin();
for (j = 0; j < n_faces; ++j) {
vh = mesh_.add_vertex();
valence = 0;
cog = zero_point;
for (ff_it = mesh_.ff_iter(*f_it); ff_it; ++ff_it) {
++valence;
cog += ff_it->position();
}
cog /= valence;
mesh_.split(*f_it, vh);
for (vf_it = mesh_.vf_iter(vh); vf_it; ++vf_it) {
vf_it->set_position(f_it->position());
}
mesh_.deref(vh).set_position(cog);
mesh_.set_point(vh, cog);
++f_it;
}
// Flip each old edge
e_it = mesh_.edges_begin();
for (j = 0; j < n_edges; ++j) {
if (mesh_.is_flip_ok(*e_it))
mesh_.flip(*e_it);
++e_it;
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VF()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,zero_point(0.0, 0.0, 0.0);
typename MeshType::FaceVertexIter fv_it;
typename MeshType::FaceIter f_it;
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
unsigned int valence = 0;
cog = zero_point;
for (fv_it = mesh_.fv_iter(*f_it); fv_it.is_valid(); ++fv_it) {
cog += mesh_.data(*fv_it).position();
++valence;
}
cog /= valence;
mesh_.data(*f_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VFa(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
unsigned int valence[3], i;
typename MeshType::Point cog,zero_point(0.0, 0.0, 0.0);
typename MeshType::Scalar alpha;
typename MeshType::FaceIter f_it;
typename MeshType::HalfedgeHandle heh;
typename MeshType::VertexHandle vh[3];
typename MeshType::VertexOHalfedgeIter voh_it;
typename MeshType::FaceVertexIter fv_it;
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
heh = mesh_.halfedge_handle(*f_it);
for (i = 0; i <= 2; ++i) {
valence[i] = 0;
vh[i] = mesh_.to_vertex_handle(heh);
for (voh_it = mesh_.voh_iter(vh[i]); voh_it; ++voh_it) {
++valence[i];
}
heh = mesh_.next_halfedge_handle(heh);
}
if (valence[0] <= valence[1])
if (valence[0] <= valence[2])
i = 0;
else
i = 2;
else
if (valence[1] <= valence[2])
i = 1;
else
i = 2;
alpha = _coeff(valence[i]);
cog = zero_point;
for (fv_it = mesh_.fv_iter(*f_it); fv_it.is_valid(); ++fv_it) {
if (*fv_it == vh[i]) {
cog += fv_it->position() * alpha;
} else {
cog += fv_it->position() * (1.0 - alpha) / 2.0;
}
}
f_it->set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VFa(scalar_t _alpha)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
unsigned int valence[3], i;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
typename MeshType::FaceIter f_it;
typename MeshType::HalfedgeHandle heh;
typename MeshType::VertexHandle vh[3];
typename MeshType::VertexOHalfedgeIter voh_it;
typename MeshType::FaceVertexIter fv_it;
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
heh = mesh_.halfedge_handle(*f_it);
for (i = 0; i <= 2; ++i) {
valence[i] = 0;
vh[i] = mesh_.to_vertex_handle(heh);
for (voh_it = mesh_.voh_iter(vh[i]); voh_it; ++voh_it) {
++valence[i];
}
heh = mesh_.next_halfedge_handle(heh);
}
if (valence[0] <= valence[1])
if (valence[0] <= valence[2])
i = 0;
else
i = 2;
else
if (valence[1] <= valence[2])
i = 1;
else
i = 2;
cog = zero_point;
for (fv_it = mesh_.fv_iter(*f_it); fv_it.is_valid(); ++fv_it) {
if (*fv_it == vh[i]) {
cog += fv_it->position() * _alpha;
} else {
cog += fv_it->position() * (1.0 - _alpha) / 2.0;
}
}
f_it->set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FF()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
typename MeshType::FaceFaceIter ff_it;
typename MeshType::FaceIter f_it;
std::vector<typename MeshType::Point> point_vector;
point_vector.clear();
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it)
{
unsigned int valence = 0;
cog = zero_point;
for (ff_it = mesh_.ff_iter(*f_it); ff_it.is_valid(); ++ff_it)
{
cog += mesh_.data(*ff_it).position();
++valence;
}
cog /= valence;
point_vector.push_back(cog);
}
for (f_it = mesh_.faces_end(); f_it != mesh_.faces_begin(); )
{
--f_it;
mesh_.data(*f_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FFc(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
typename MeshType::FaceFaceIter ff_it;
typename MeshType::FaceIter f_it;
typename MeshType::Scalar c;
std::vector<typename MeshType::Point> point_vector;
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
unsigned int valence = 0;
cog = zero_point;
for (ff_it = mesh_.ff_iter(*f_it); ff_it; ++ff_it) {
cog += ff_it->position();
++valence;
}
cog /= valence;
c = _coeff(valence);
cog = cog * (1.0 - c) + f_it->position() * c;
point_vector.push_back(cog);
}
for (f_it = mesh_.faces_end(); f_it != mesh_.faces_begin(); ) {
--f_it;
f_it->set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FFc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::FaceFaceIter ff_it;
typename MeshType::FaceIter f_it;
std::vector<typename MeshType::Point> point_vector;
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
unsigned int valence = 0;
cog = zero_point;
for (ff_it = mesh_.ff_iter(*f_it); ff_it; ++ff_it) {
cog += ff_it->position();
++valence;
}
cog /= valence;
cog = cog * (1.0 - _c) + f_it->position() * _c;
point_vector.push_back(cog);
}
for (f_it = mesh_.faces_end(); f_it != mesh_.faces_begin(); ) {
--f_it;
f_it->set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FV()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexFaceIter vf_it;
typename MeshType::VertexIter v_it;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (vf_it = mesh_.vf_iter(*v_it); vf_it; ++vf_it) {
cog += vf_it->position();
++valence;
}
cog /= valence;
v_it->set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FVc(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
scalar_t c;
typename MeshType::VertexOHalfedgeIter voh_it;
typename MeshType::VertexIter v_it;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (voh_it = mesh_.voh_iter(*v_it); voh_it.is_valid(); ++voh_it) {
++valence;
}
2016-11-07 15:33:20 +01:00
c = static_cast<real_t>(_coeff(valence));
for (voh_it = mesh_.voh_iter(*v_it); voh_it.is_valid(); ++voh_it) {
if (mesh_.face_handle(*voh_it).is_valid()) {
if (mesh_.face_handle(mesh_.opposite_halfedge_handle(mesh_.next_halfedge_handle(*voh_it))).is_valid()) {
cog += mesh_.data(mesh_.face_handle(*voh_it)).position() * c;
2016-11-07 15:10:23 +01:00
cog += mesh_.data(mesh_.face_handle(mesh_.opposite_halfedge_handle(mesh_.next_halfedge_handle(*voh_it)))).position() * (static_cast<typename MeshType::Point::value_type>(1.0) - c);
} else {
cog += mesh_.data(mesh_.face_handle(*voh_it)).position();
}
} else {
--valence;
}
}
if (valence > 0)
cog /= valence;
mesh_.data(*v_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FVc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexOHalfedgeIter voh_it;
typename MeshType::VertexIter v_it;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (voh_it = mesh_.voh_iter(*v_it); voh_it; ++voh_it) {
++valence;
}
for (voh_it = mesh_.voh_iter(*v_it); voh_it; ++voh_it) {
if (mesh_.face_handle(*voh_it).is_valid()) {
if (mesh_.face_handle(mesh_.opposite_halfedge_handle(mesh_.next_halfedge_handle(*voh_it))).is_valid()) {
cog += mesh_.deref(mesh_.face_handle(*voh_it)).position() * _c;
cog += mesh_.deref(mesh_.face_handle(mesh_.opposite_halfedge_handle(mesh_.next_halfedge_handle(*voh_it)))).position() * (1.0 - _c);
} else {
cog += mesh_.deref(mesh_.face_handle(*voh_it)).position();
}
} else {
--valence;
}
}
if (valence > 0)
cog /= valence;
v_it->set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VdE()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::HalfedgeHandle heh1, heh2;
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
cog = zero_point;
unsigned int valence = 2;
heh1 = mesh_.halfedge_handle(*e_it, 0);
heh2 = mesh_.opposite_halfedge_handle(heh1);
cog += mesh_.data(mesh_.to_vertex_handle(heh1)).position();
cog += mesh_.data(mesh_.to_vertex_handle(heh2)).position();
if (!mesh_.is_boundary(heh1)) {
cog += mesh_.data(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh1))).position();
++valence;
}
if (!mesh_.is_boundary(heh2)) {
cog += mesh_.data(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh2))).position();
++valence;
}
cog /= valence;
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VdEc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::HalfedgeHandle heh;
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
cog = zero_point;
for (int i = 0; i <= 1; ++i) {
heh = mesh_.halfedge_handle(*e_it, i);
if (!mesh_.is_boundary(heh))
{
cog += mesh_.point(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh))) * (0.5 - _c);
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * _c;
}
else
{
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position();
}
}
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VdEg(scalar_t _gamma)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::HalfedgeHandle heh;
typename MeshType::VertexOHalfedgeIter voh_it;
unsigned int valence[2], i;
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
cog = zero_point;
for (i = 0; i <= 1; ++i)
{
heh = mesh_.halfedge_handle(*e_it, i);
valence[i] = 0;
// look for lowest valence vertex
for (voh_it = mesh_.voh_iter(mesh_.to_vertex_handle(heh)); voh_it; ++voh_it)
{
++valence[i];
}
}
if (valence[0] < valence[1])
i = 0;
else
i = 1;
heh = mesh_.halfedge_handle(*e_it, i);
if (!mesh_.is_boundary(heh)) {
cog += mesh_.point(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh))) * (_gamma);
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * (1.0 - 3.0 * _gamma);
} else {
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * (1.0 - 2.0 * _gamma);
}
heh = mesh_.halfedge_handle(*e_it, 1-i);
if (!mesh_.is_boundary(heh))
{
cog += mesh_.point(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh))) * (_gamma);
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * _gamma;
}
else
{
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * 2.0 * _gamma;
}
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VdEg(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::HalfedgeHandle heh;
typename MeshType::VertexOHalfedgeIter voh_it;
unsigned int valence[2], i;
scalar_t gamma;
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
cog = zero_point;
for (i = 0; i <= 1; ++i) {
heh = mesh_.halfedge_handle(*e_it, i);
valence[i] = 0;
// look for lowest valence vertex
for (voh_it = mesh_.voh_iter(mesh_.to_vertex_handle(heh)); voh_it; ++voh_it)
{
++valence[i];
}
}
if (valence[0] < valence[1])
i = 0;
else
i = 1;
gamma = _coeff(valence[i]);
heh = mesh_.halfedge_handle(*e_it, i);
if (!mesh_.is_boundary(heh))
{
cog += mesh_.point(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh))) * (gamma);
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * (1.0 - 3.0 * gamma);
}
else
{
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * (1.0 - 2.0 * gamma);
}
heh = mesh_.halfedge_handle(*e_it, 1-i);
if (!mesh_.is_boundary(heh)) {
cog += mesh_.point(mesh_.to_vertex_handle(mesh_.next_halfedge_handle(heh))) * (gamma);
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * gamma;
} else {
cog += mesh_.data(mesh_.to_vertex_handle(heh)).position() * 2.0 * gamma;
}
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EV()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexIter v_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexEdgeIter ve_it;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
{
unsigned int valence = 0;
cog = zero_point;
for (ve_it = mesh_.ve_iter(*v_it); ve_it; ++ve_it) {
cog += mesh_.data(ve_it).position();
++valence;
}
cog /= valence;
mesh_.data(*v_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EVc(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexIter v_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexOHalfedgeIter voh_it;
scalar_t c;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
{
unsigned int valence = 0;
cog = zero_point;
for (voh_it = mesh_.voh_iter(*v_it); voh_it.is_valid(); ++voh_it)
{
++valence;
}
2016-10-28 08:59:36 +02:00
// Coefficients always work on double so we cast them to the correct scalar here
c = static_cast<scalar_t>(_coeff(valence));
for (voh_it = mesh_.voh_iter(*v_it); voh_it.is_valid(); ++voh_it) {
cog += mesh_.data(mesh_.edge_handle(*voh_it)).position() * c;
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(*voh_it))).position() * (1.0 - c);
}
cog /= valence;
mesh_.data(*v_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EVc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::VertexIter v_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexOHalfedgeIter voh_it;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (voh_it = mesh_.voh_iter(*v_it); voh_it; ++voh_it) {
++valence;
}
for (voh_it = mesh_.voh_iter(*v_it); voh_it; ++voh_it) {
cog += mesh_.data(mesh_.edge_handle(*voh_it)).position() * _c;
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(*voh_it))).position() * (1.0 - _c);
}
cog /= valence;
mesh_.data(*v_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EF()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::FaceIter f_it;
typename MeshType::FaceEdgeIter fe_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it) {
unsigned int valence = 0;
cog = zero_point;
for (fe_it = mesh_.fe_iter(*f_it); fe_it; ++fe_it) {
++valence;
cog += mesh_.data(fe_it).position();
}
cog /= valence;
mesh_.data(*f_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::FE()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
unsigned int valence = 0;
cog = zero_point;
if (mesh_.face_handle(mesh_.halfedge_handle(*e_it, 0)).is_valid()) {
cog += mesh_.data(mesh_.face_handle(mesh_.halfedge_handle(*e_it, 0))).position();
++valence;
}
if (mesh_.face_handle(mesh_.halfedge_handle(*e_it, 1)).is_valid()) {
cog += mesh_.data(mesh_.face_handle(mesh_.halfedge_handle(*e_it, 1))).position();
++valence;
}
cog /= valence;
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VE()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::EdgeIter e_it;
typename MeshType::Point cog;
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it)
{
cog = mesh_.data(mesh_.to_vertex_handle(mesh_.halfedge_handle(*e_it, 0))).position();
cog += mesh_.data(mesh_.to_vertex_handle(mesh_.halfedge_handle(*e_it, 1))).position();
cog /= 2.0;
mesh_.data(*e_it).set_position(cog);
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VV()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexVertexIter vv_it;
typename MeshType::VertexIter v_it;
std::vector<typename MeshType::Point> point_vector;
point_vector.clear();
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (vv_it = mesh_.vv_iter(*v_it); vv_it; ++vv_it) {
cog += vv_it->position();
++valence;
}
cog /= valence;
point_vector.push_back(cog);
}
for (v_it = mesh_.vertices_end(); v_it != mesh_.vertices_begin(); )
{
--v_it;
mesh_.data(*v_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VVc(Coeff& _coeff)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog,
zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexVertexIter vv_it;
typename MeshType::VertexIter v_it;
scalar_t c;
std::vector<typename MeshType::Point> point_vector;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
{
unsigned int valence = 0;
cog = zero_point;
for (vv_it = mesh_.vv_iter(*v_it); vv_it; ++vv_it)
{
cog += vv_it->position();
++valence;
}
cog /= valence;
c = _coeff(valence);
cog = cog * (1 - c) + mesh_.data(*v_it).position() * c;
point_vector.push_back(cog);
}
for (v_it = mesh_.vertices_end(); v_it != mesh_.vertices_begin(); )
{
--v_it;
mesh_.data(*v_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::VVc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::VertexVertexIter vv_it;
typename MeshType::VertexIter v_it;
std::vector<typename MeshType::Point> point_vector;
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it) {
unsigned int valence = 0;
cog = zero_point;
for (vv_it = mesh_.vv_iter(*v_it); vv_it; ++vv_it) {
cog += mesh_.data(vv_it).position();
++valence;
}
cog /= valence;
cog = cog * (1.0 - _c) + v_it->position() * _c;
point_vector.push_back(cog);
}
for (v_it = mesh_.vertices_end(); v_it != mesh_.vertices_begin(); ) {
--v_it;
mesh_.data(*v_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EdE()
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::EdgeIter e_it;
typename MeshType::HalfedgeHandle heh;
std::vector<typename MeshType::Point> point_vector;
point_vector.clear();
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it) {
unsigned int valence = 0;
cog = zero_point;
for (int i = 0; i <= 1; ++i) {
heh = mesh_.halfedge_handle(*e_it, i);
if (mesh_.face_handle(heh).is_valid())
{
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(heh))).position();
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(mesh_.next_halfedge_handle(heh)))).position();
++valence;
++valence;
}
}
cog /= valence;
point_vector.push_back(cog);
}
for (e_it = mesh_.edges_end(); e_it != mesh_.edges_begin(); )
{
--e_it;
mesh_.data(*e_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::EdEc(scalar_t _c)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
typename MeshType::Point cog, zero_point(0.0, 0.0, 0.0);
typename MeshType::EdgeIter e_it;
typename MeshType::HalfedgeHandle heh;
std::vector<typename MeshType::Point> point_vector;
point_vector.clear();
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it)
{
unsigned int valence = 0;
cog = zero_point;
for (int i = 0; i <= 1; ++i) {
heh = mesh_.halfedge_handle(*e_it, i);
if (mesh_.face_handle(heh).is_valid())
{
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(heh))).position() * (1.0 - _c);
cog += mesh_.data(mesh_.edge_handle(mesh_.next_halfedge_handle(mesh_.next_halfedge_handle(heh)))).position() * (1.0 - _c);
++valence;
++valence;
}
}
cog /= valence;
cog += mesh_.data(e_it).position() * _c;
point_vector.push_back(cog);
}
for (e_it = mesh_.edges_end(); e_it != mesh_.edges_begin(); ) {
--e_it;
mesh_.data(*e_it).set_position(point_vector.back());
point_vector.pop_back();
}
}
/// Corner Cutting
template<typename MeshType, typename RealType>
void CompositeT<MeshType,RealType>::corner_cutting(HalfedgeHandle _heh)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
// Define Halfedge Handles
typename MeshType::HalfedgeHandle heh5(_heh);
typename MeshType::HalfedgeHandle heh6(mesh_.next_halfedge_handle(_heh));
// Cycle around the polygon to find correct Halfedge
for (; mesh_.next_halfedge_handle(mesh_.next_halfedge_handle(heh5)) != _heh;
heh5 = mesh_.next_halfedge_handle(heh5)) {};
typename MeshType::HalfedgeHandle heh2(mesh_.next_halfedge_handle(heh5));
typename MeshType::HalfedgeHandle
heh3(mesh_.new_edge(mesh_.to_vertex_handle(_heh),
mesh_.to_vertex_handle(heh5)));
typename MeshType::HalfedgeHandle heh4(mesh_.opposite_halfedge_handle(heh3));
// Old and new Face
typename MeshType::FaceHandle fh_old(mesh_.face_handle(heh6));
typename MeshType::FaceHandle fh_new(mesh_.new_face());
// Init new face
mesh_.data(fh_new).set_position(mesh_.data(fh_old).position());
// Re-Set Handles around old Face
mesh_.set_next_halfedge_handle(heh4, heh6);
mesh_.set_next_halfedge_handle(heh5, heh4);
mesh_.set_face_handle(heh4, fh_old);
mesh_.set_face_handle(heh5, fh_old);
mesh_.set_face_handle(heh6, fh_old);
mesh_.set_halfedge_handle(fh_old, heh4);
// Re-Set Handles around new Face
mesh_.set_next_halfedge_handle(_heh, heh3);
mesh_.set_next_halfedge_handle(heh3, heh2);
mesh_.set_face_handle(_heh, fh_new);
mesh_.set_face_handle(heh2, fh_new);
mesh_.set_face_handle(heh3, fh_new);
mesh_.set_halfedge_handle(fh_new, _heh);
}
/// Split Edge
template<typename MeshType, typename RealType>
typename MeshType::VertexHandle
CompositeT<MeshType,RealType>::split_edge(HalfedgeHandle _heh)
{
assert(p_mesh_); MeshType& mesh_ = *p_mesh_;
HalfedgeHandle heh1;
HalfedgeHandle heh2;
HalfedgeHandle heh3;
HalfedgeHandle temp_heh;
VertexHandle
vh,
vh1(mesh_.to_vertex_handle(_heh)),
vh2(mesh_.from_vertex_handle(_heh));
// Calculate and Insert Midpoint of Edge
2016-11-07 14:30:14 +01:00
vh = mesh_.add_vertex((mesh_.point(vh2) + mesh_.point(vh1)) / static_cast<typename MeshType::Point::value_type>(2.0) );
// Re-Set Handles
heh2 = mesh_.opposite_halfedge_handle(_heh);
if (!mesh_.is_boundary(mesh_.edge_handle(_heh))) {
for (temp_heh = mesh_.next_halfedge_handle(heh2);
mesh_.next_halfedge_handle(temp_heh) != heh2;
temp_heh = mesh_.next_halfedge_handle(temp_heh) ) {}
} else {
for (temp_heh = _heh;
mesh_.next_halfedge_handle(temp_heh) != heh2;
temp_heh = mesh_.opposite_halfedge_handle(mesh_.next_halfedge_handle(temp_heh))) {}
}
heh1 = mesh_.new_edge(vh, vh1);
heh3 = mesh_.opposite_halfedge_handle(heh1);
mesh_.set_vertex_handle(_heh, vh);
mesh_.set_next_halfedge_handle(temp_heh, heh3);
mesh_.set_next_halfedge_handle(heh1, mesh_.next_halfedge_handle(_heh));
mesh_.set_next_halfedge_handle(_heh, heh1);
mesh_.set_next_halfedge_handle(heh3, heh2);
if (mesh_.face_handle(heh2).is_valid()) {
mesh_.set_face_handle(heh3, mesh_.face_handle(heh2));
mesh_.set_halfedge_handle(mesh_.face_handle(heh3), heh3);
}
mesh_.set_face_handle(heh1, mesh_.face_handle(_heh));
mesh_.set_halfedge_handle(vh, heh1);
mesh_.set_halfedge_handle(mesh_.face_handle(_heh), _heh);
mesh_.set_halfedge_handle(vh1, heh3);
return vh;
}
//=============================================================================
} // END_NS_UNIFORM
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================
#endif // OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC defined
//=============================================================================