Files
openmesh/src/OpenMesh/Core/Mesh/PolyMeshT.cc

403 lines
13 KiB
C++
Raw Normal View History

/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2012 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see <http://www.gnu.org/licenses/>. *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
//=============================================================================
//
// CLASS PolyMeshT - IMPLEMENTATION
//
//=============================================================================
#define OPENMESH_POLYMESH_C
//== INCLUDES =================================================================
#include <OpenMesh/Core/Mesh/PolyMeshT.hh>
#include <OpenMesh/Core/Geometry/LoopSchemeMaskT.hh>
#include <OpenMesh/Core/Utils/vector_cast.hh>
#include <OpenMesh/Core/System/omstream.hh>
#include <vector>
//== NAMESPACES ===============================================================
namespace OpenMesh {
//== IMPLEMENTATION ==========================================================
template <class Kernel>
uint PolyMeshT<Kernel>::find_feature_edges(Scalar _angle_tresh)
{
assert(Kernel::has_edge_status());//this function needs edge status property
uint n_feature_edges = 0;
for (EdgeIter e_it = Kernel::edges_begin(); e_it != Kernel::edges_end(); ++e_it)
{
if (fabs(calc_dihedral_angle(e_it)) > _angle_tresh)
{//note: could be optimized by comparing cos(dih_angle) vs. cos(_angle_tresh)
status(e_it).set_feature(true);
n_feature_edges++;
}
else
{
status(e_it).set_feature(false);
}
}
return n_feature_edges;
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_face_normal(FaceHandle _fh) const
{
assert(this->halfedge_handle(_fh).is_valid());
ConstFaceVertexIter fv_it(this->cfv_iter(_fh));
Point p0 = this->point(fv_it);
Point p0i = p0; //save point of vertex 0
++fv_it;
Point p1 = this->point(fv_it);
Point p1i = p1; //save point of vertex 1
++fv_it;
Point p2;
//calculate area-weighted average normal of polygon's ears
Normal n(0,0,0);
for(; fv_it.is_valid(); ++fv_it)
{
p2 = this->point(fv_it);
n += vector_cast<Normal>(calc_face_normal(p0, p1, p2));
p0 = p1;
p1 = p2;
}
//two additional steps since we started at vertex 2, not 0
n += vector_cast<Normal>(calc_face_normal(p0i, p0, p1));
n += vector_cast<Normal>(calc_face_normal(p1i, p0i, p1));
typename vector_traits<Normal>::value_type norm = n.length();
// The expression ((n *= (1.0/norm)),n) is used because the OpenSG
// vector class does not return self after component-wise
// self-multiplication with a scalar!!!
return (norm != typename vector_traits<Normal>::value_type(0)) ? ((n *= (typename vector_traits<Normal>::value_type(1)/norm)),n) : Normal(0,0,0);
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_face_normal(const Point& _p0,
const Point& _p1,
const Point& _p2) const
{
#if 1
// The OpenSG <Vector>::operator -= () does not support the type Point
// as rhs. Therefore use vector_cast at this point!!!
// Note! OpenSG distinguishes between Normal and Point!!!
Normal p1p0(vector_cast<Normal>(_p0)); p1p0 -= vector_cast<Normal>(_p1);
Normal p1p2(vector_cast<Normal>(_p2)); p1p2 -= vector_cast<Normal>(_p1);
Normal n = cross(p1p2, p1p0);
typename vector_traits<Normal>::value_type norm = n.length();
// The expression ((n *= (1.0/norm)),n) is used because the OpenSG
// vector class does not return self after component-wise
// self-multiplication with a scalar!!!
return (norm != typename vector_traits<Normal>::value_type(0)) ? ((n *= (typename vector_traits<Normal>::value_type(1)/norm)),n) : Normal(0,0,0);
#else
Point p1p0 = _p0; p1p0 -= _p1;
Point p1p2 = _p2; p1p2 -= _p1;
Normal n = vector_cast<Normal>(cross(p1p2, p1p0));
typename vector_traits<Normal>::value_type norm = n.length();
return (norm != 0.0) ? n *= (1.0/norm) : Normal(0,0,0);
#endif
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
calc_face_centroid(FaceHandle _fh, Point& _pt) const
{
_pt.vectorize(0);
Scalar valence = 0.0;
for (ConstFaceVertexIter cfv_it = this->cfv_iter(_fh); cfv_it; ++cfv_it, valence += 1.0)
{
_pt += this->point(cfv_it);
}
_pt /= valence;
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_normals()
{
// Face normals are required to compute the vertex and the halfedge normals
if (Kernel::has_face_normals() ) {
update_face_normals();
if (Kernel::has_vertex_normals() ) update_vertex_normals();
if (Kernel::has_halfedge_normals()) update_halfedge_normals();
}
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_face_normals()
{
FaceIter f_it(Kernel::faces_begin()), f_end(Kernel::faces_end());
for (; f_it != f_end; ++f_it)
this->set_normal(*f_it, calc_face_normal(*f_it));
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_halfedge_normals(const double _feature_angle)
{
HalfedgeIter h_it(Kernel::halfedges_begin()), h_end(Kernel::halfedges_end());
for (; h_it != h_end; ++h_it)
this->set_normal(*h_it, calc_halfedge_normal(*h_it, _feature_angle));
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_halfedge_normal(HalfedgeHandle _heh, const double _feature_angle) const
{
if(Kernel::is_boundary(_heh))
return Normal(0,0,0);
else
{
std::vector<FaceHandle> fhs; fhs.reserve(10);
HalfedgeHandle heh = _heh;
// collect CW face-handles
do
{
fhs.push_back(Kernel::face_handle(heh));
heh = Kernel::next_halfedge_handle(heh);
heh = Kernel::opposite_halfedge_handle(heh);
}
while(heh != _heh && !Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
// collect CCW face-handles
if(heh != _heh && !is_estimated_feature_edge(_heh, _feature_angle))
{
heh = Kernel::opposite_halfedge_handle(_heh);
if ( !Kernel::is_boundary(heh) ) {
do
{
fhs.push_back(Kernel::face_handle(heh));
heh = Kernel::prev_halfedge_handle(heh);
heh = Kernel::opposite_halfedge_handle(heh);
}
while(!Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
}
}
Normal n(0,0,0);
for(unsigned int i=0; i<fhs.size(); ++i)
n += Kernel::normal(fhs[i]);
return n.normalize();
}
}
//-----------------------------------------------------------------------------
template <class Kernel>
bool
PolyMeshT<Kernel>::
is_estimated_feature_edge(HalfedgeHandle _heh, const double _feature_angle) const
{
EdgeHandle eh = Kernel::edge_handle(_heh);
if(Kernel::has_edge_status())
{
if(Kernel::status(eh).feature())
return true;
}
if(Kernel::is_boundary(eh))
return false;
// compute angle between faces
FaceHandle fh0 = Kernel::face_handle(_heh);
FaceHandle fh1 = Kernel::face_handle(Kernel::opposite_halfedge_handle(_heh));
Normal fn0 = Kernel::normal(fh0);
Normal fn1 = Kernel::normal(fh1);
// dihedral angle above angle threshold
return ( dot(fn0,fn1) < cos(_feature_angle) );
}
//-----------------------------------------------------------------------------
template <class Kernel>
typename PolyMeshT<Kernel>::Normal
PolyMeshT<Kernel>::
calc_vertex_normal(VertexHandle _vh) const
{
Normal n;
calc_vertex_normal_fast(_vh,n);
Scalar norm = n.length();
if (norm != 0.0) n *= (Scalar(1.0)/norm);
return n;
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_fast(VertexHandle _vh, Normal& _n) const
{
_n.vectorize(0.0);
for (ConstVertexFaceIter vf_it=this->cvf_iter(_vh); vf_it; ++vf_it)
_n += this->normal(*vf_it);
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_correct(VertexHandle _vh, Normal& _n) const
{
_n.vectorize(0.0);
ConstVertexIHalfedgeIter cvih_it = cvih_iter(_vh);
if (!cvih_it)
{//don't crash on isolated vertices
return;
}
Normal in_he_vec;
calc_edge_vector(cvih_it, in_he_vec);
for ( ; cvih_it; ++cvih_it)
{//calculates the sector normal defined by cvih_it and adds it to _n
if (is_boundary(cvih_it))
{
continue;
}
HalfedgeHandle out_heh(next_halfedge_handle(cvih_it));
Normal out_he_vec;
calc_edge_vector(out_heh, out_he_vec);
_n += cross(in_he_vec, out_he_vec);//sector area is taken into account
in_he_vec = out_he_vec;
in_he_vec *= -1;//change the orientation
}
}
//-----------------------------------------------------------------------------
template <class Kernel>
void PolyMeshT<Kernel>::
calc_vertex_normal_loop(VertexHandle _vh, Normal& _n) const
{
static const LoopSchemeMaskDouble& loop_scheme_mask__ =
LoopSchemeMaskDoubleSingleton::Instance();
Normal t_v(0.0,0.0,0.0), t_w(0.0,0.0,0.0);
unsigned int vh_val = valence(_vh);
unsigned int i = 0;
for (ConstVertexOHalfedgeIter cvoh_it = cvoh_iter(_vh); cvoh_it; ++cvoh_it, ++i)
{
VertexHandle r1_v(to_vertex_handle(cvoh_it));
t_v += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang0_weight(vh_val, i))*this->point(r1_v);
t_w += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang1_weight(vh_val, i))*this->point(r1_v);
}
_n = cross(t_w, t_v);//hack: should be cross(t_v, t_w), but then the normals are reversed?
}
//-----------------------------------------------------------------------------
template <class Kernel>
void
PolyMeshT<Kernel>::
update_vertex_normals()
{
VertexIter v_it(Kernel::vertices_begin()), v_end(Kernel::vertices_end());
for (; v_it!=v_end; ++v_it)
this->set_normal(*v_it, calc_vertex_normal(*v_it));
}
//=============================================================================
} // namespace OpenMesh
//=============================================================================