First checkin for OpenMesh 2.0
git-svn-id: http://www.openmesh.org/svnrepo/OpenMesh/trunk@2 fdac6126-5c0c-442c-9429-916003d36597
This commit is contained in:
467
Apps/Subdivider/adaptive_subdivider.cc
Normal file
467
Apps/Subdivider/adaptive_subdivider.cc
Normal file
@@ -0,0 +1,467 @@
|
||||
// ============================================================================
|
||||
|
||||
// -------------------------------------------------------------- includes ----
|
||||
|
||||
// -------------------- OpenMesh
|
||||
#include <OpenMesh/Core/IO/MeshIO.hh>
|
||||
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
|
||||
#include <OpenMesh/Tools/Utils/Timer.hh>
|
||||
#include <OpenMesh/Tools/Utils/getopt.h>
|
||||
// -------------------- OpenMesh Adaptive Composite Subdivider
|
||||
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.hh>
|
||||
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RulesT.hh>
|
||||
// -------------------- STL
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#if defined(OM_CC_MIPS)
|
||||
# include <math.h>
|
||||
#else
|
||||
# include <cmath>
|
||||
using std::pow;
|
||||
#endif
|
||||
|
||||
|
||||
using OpenMesh::Subdivider::Adaptive::CompositeTraits;
|
||||
|
||||
// define mesh, rule interface, and subdivider types
|
||||
typedef OpenMesh::TriMesh_ArrayKernelT<CompositeTraits> MyMesh;
|
||||
typedef OpenMesh::Subdivider::Adaptive::RuleInterfaceT<MyMesh> Rule;
|
||||
typedef OpenMesh::Subdivider::Adaptive::CompositeT<MyMesh> Subdivider;
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
using namespace OpenMesh::Subdivider;
|
||||
|
||||
// factory function to add a RULE to a subdivider
|
||||
#define ADD_FN( RULE ) \
|
||||
bool add_ ## RULE( Subdivider& _sub ) \
|
||||
{ return _sub.add< Adaptive:: RULE < MyMesh > >(); }
|
||||
|
||||
ADD_FN( Tvv3 );
|
||||
ADD_FN( Tvv4 );
|
||||
ADD_FN( VF );
|
||||
ADD_FN( FF );
|
||||
ADD_FN( FFc );
|
||||
ADD_FN( FV );
|
||||
ADD_FN( FVc );
|
||||
ADD_FN( VV );
|
||||
ADD_FN( VVc );
|
||||
ADD_FN( VE );
|
||||
ADD_FN( VdE );
|
||||
ADD_FN( VdEc );
|
||||
ADD_FN( EV );
|
||||
ADD_FN( EVc );
|
||||
ADD_FN( EF );
|
||||
ADD_FN( FE );
|
||||
ADD_FN( EdE );
|
||||
ADD_FN( EdEc );
|
||||
|
||||
#undef ADD_FN
|
||||
|
||||
typedef bool (*add_rule_ft)( Subdivider& );
|
||||
|
||||
// map rule name to factory function
|
||||
struct RuleMap : std::map< std::string, add_rule_ft >
|
||||
{
|
||||
RuleMap()
|
||||
{
|
||||
#define ADD( RULE ) \
|
||||
(*this)[ #RULE ] = add_##RULE;
|
||||
|
||||
ADD( Tvv3 );
|
||||
ADD( Tvv4 );
|
||||
ADD( VF );
|
||||
ADD( FF );
|
||||
ADD( FFc );
|
||||
ADD( FV );
|
||||
ADD( FVc );
|
||||
ADD( VV );
|
||||
ADD( VVc );
|
||||
ADD( VE );
|
||||
ADD( VdE );
|
||||
ADD( VdEc );
|
||||
ADD( EV );
|
||||
ADD( EVc );
|
||||
ADD( EF );
|
||||
ADD( FE );
|
||||
ADD( EdE );
|
||||
ADD( EdEc );
|
||||
|
||||
#undef ADD
|
||||
}
|
||||
|
||||
} available_rules;
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
std::string basename( const std::string& _fname );
|
||||
void usage_and_exit(const std::string& _fname, int xcode);
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
size_t n_iter = 0; // n iteration
|
||||
size_t max_nv = size_t(-1); // max. number of vertices in the end
|
||||
std::string ifname; // input mesh
|
||||
std::string ofname; // output mesh
|
||||
std::string rule_sequence = "Tvv3 VF FF FVc"; // sqrt3 default
|
||||
bool uniform = false;
|
||||
int c;
|
||||
|
||||
// ---------------------------------------- evaluate command line
|
||||
while ( (c=getopt(argc, argv, "hlm:n:r:sU"))!=-1 )
|
||||
{
|
||||
switch(c)
|
||||
{
|
||||
case 's': rule_sequence = "Tvv3 VF FF FVc"; break; // sqrt3
|
||||
case 'l': rule_sequence = "Tvv4 VdE EVc VdE EVc"; break; // loop
|
||||
case 'n': { std::stringstream s; s << optarg; s >> n_iter; } break;
|
||||
case 'm': { std::stringstream s; s << optarg; s >> max_nv; } break;
|
||||
case 'r': rule_sequence = optarg; break;
|
||||
case 'U': uniform = true; break;
|
||||
case 'h': usage_and_exit(argv[0],0);
|
||||
case '?':
|
||||
default: usage_and_exit(argv[0],1);
|
||||
}
|
||||
}
|
||||
|
||||
if ( optind == argc )
|
||||
usage_and_exit(argv[0],2);
|
||||
|
||||
if ( optind < argc )
|
||||
ifname = argv[optind++];
|
||||
|
||||
if ( optind < argc )
|
||||
ofname = argv[optind++];
|
||||
|
||||
// if ( optind < argc ) // too many arguments
|
||||
|
||||
// ---------------------------------------- mesh and subdivider
|
||||
MyMesh mesh;
|
||||
Subdivider subdivider(mesh);
|
||||
|
||||
|
||||
// -------------------- read mesh from file
|
||||
std::cout << "Input mesh : " << ifname << std::endl;
|
||||
if (!OpenMesh::IO::read_mesh(mesh, ifname))
|
||||
{
|
||||
std::cerr << " Error reading file!\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
// store orignal size of mesh
|
||||
size_t n_vertices = mesh.n_vertices();
|
||||
size_t n_edges = mesh.n_edges();
|
||||
size_t n_faces = mesh.n_faces();
|
||||
|
||||
if ( n_iter > 0 )
|
||||
std::cout << "Desired #iterations: " << n_iter << std::endl;
|
||||
|
||||
if ( max_nv < size_t(-1) )
|
||||
{
|
||||
std::cout << "Desired max. #V : " << max_nv << std::endl;
|
||||
if (!n_iter )
|
||||
n_iter = size_t(-1);
|
||||
}
|
||||
|
||||
|
||||
// -------------------- Setup rule sequence
|
||||
{
|
||||
std::stringstream s;
|
||||
std::string token;
|
||||
|
||||
RuleMap::iterator it = available_rules.end();
|
||||
|
||||
for (s << rule_sequence; s >> token; )
|
||||
{
|
||||
if ( (it=available_rules.find( token )) != available_rules.end() )
|
||||
{
|
||||
it->second( subdivider );
|
||||
}
|
||||
else if ( token[0]=='(' && (subdivider.n_rules() > 0) )
|
||||
{
|
||||
std::string::size_type beg(1);
|
||||
if (token.length()==1)
|
||||
{
|
||||
s >> token;
|
||||
beg = 0;
|
||||
}
|
||||
|
||||
std::string::size_type
|
||||
end = token.find_last_of(')');
|
||||
std::string::size_type
|
||||
size = end==std::string::npos ? token.size()-beg : end-beg;
|
||||
|
||||
std::stringstream v;
|
||||
MyMesh::Scalar coeff;
|
||||
std::cout << " " << token << std::endl;
|
||||
std::cout << " " << beg << " " << end << " " << size << std::endl;
|
||||
v << token.substr(beg, size);
|
||||
v >> coeff;
|
||||
std::cout << " coeffecient " << coeff << std::endl;
|
||||
subdivider.rule( subdivider.n_rules()-1 ).set_coeff(coeff);
|
||||
|
||||
if (end == std::string::npos)
|
||||
{
|
||||
s >> token;
|
||||
if (token[0]!=')')
|
||||
{
|
||||
std::cerr << "Syntax error: Missing ')'\n";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cerr << "Syntax error: " << token << "?\n";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Rule sequence : "
|
||||
<< subdivider.rules_as_string() << std::endl;
|
||||
|
||||
// -------------------- Initialize subdivider
|
||||
std::cout << "Initialize subdivider\n";
|
||||
if (!subdivider.initialize())
|
||||
{
|
||||
std::cerr << " Error!\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
//
|
||||
MyMesh::FaceFaceIter ff_it;
|
||||
double quality(0.0), face_quality, temp_quality;
|
||||
int valence;
|
||||
|
||||
// ---------------------------------------- subdivide
|
||||
std::cout << "\nSubdividing...\n";
|
||||
|
||||
OpenMesh::Utils::Timer timer, timer2;
|
||||
size_t i;
|
||||
|
||||
if ( uniform )
|
||||
{ // unifom
|
||||
MyMesh::VertexHandle vh;
|
||||
MyMesh::VertexIter v_it;
|
||||
MyMesh::FaceHandle fh;
|
||||
MyMesh::FaceIter f_it;
|
||||
|
||||
|
||||
// raise all vertices to target state
|
||||
timer.start();
|
||||
|
||||
size_t n = n_iter;
|
||||
size_t n_rules = subdivider.n_rules();
|
||||
|
||||
i = 0;
|
||||
|
||||
// calculate target states for faces and vertices
|
||||
int target1 = (n - 1) * n_rules + subdivider.subdiv_rule().number() + 1;
|
||||
int target2 = n * n_rules;
|
||||
|
||||
for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
|
||||
|
||||
if (mesh.data(f_it).state() < target1) {
|
||||
++i;
|
||||
fh = f_it.handle();
|
||||
timer2.start();
|
||||
subdivider.refine(fh);
|
||||
timer2.stop();
|
||||
}
|
||||
}
|
||||
|
||||
for (v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
|
||||
|
||||
if (mesh.data(v_it).state() < target2) {
|
||||
vh = v_it.handle();
|
||||
timer2.cont();
|
||||
subdivider.refine(vh);
|
||||
timer2.stop();
|
||||
}
|
||||
}
|
||||
timer.stop();
|
||||
}
|
||||
else
|
||||
{ // adaptive
|
||||
|
||||
MyMesh::FaceIter f_it;
|
||||
MyMesh::FaceHandle fh;
|
||||
|
||||
std::vector<double> __acos;
|
||||
size_t buckets(3000);
|
||||
double range(2.0);
|
||||
double range2bucket(buckets/range);
|
||||
|
||||
for (i = 0; i < buckets; ++i)
|
||||
__acos.push_back( acos(-1.0 + i * range / buckets) );
|
||||
|
||||
timer.start(); // total time needed
|
||||
|
||||
// n iterations or until desired number of vertices reached approx.
|
||||
for (i = 0; i < n_iter && mesh.n_vertices() < max_nv; ++i)
|
||||
{
|
||||
mesh.update_face_normals();
|
||||
|
||||
// calculate quality
|
||||
quality = 0.0;
|
||||
|
||||
fh = mesh.faces_begin().handle();
|
||||
|
||||
// check every face
|
||||
for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
|
||||
|
||||
face_quality = 0.0;
|
||||
valence = 0;
|
||||
|
||||
for (ff_it = mesh.ff_iter(f_it.handle()); ff_it; ++ff_it) {
|
||||
|
||||
temp_quality = OpenMesh::dot( mesh.normal(f_it),
|
||||
mesh.normal(ff_it) );
|
||||
|
||||
if (temp_quality >= 1.0)
|
||||
temp_quality = .99;
|
||||
else if (temp_quality <= -1.0)
|
||||
temp_quality = -.99;
|
||||
temp_quality = (1.0+temp_quality) * range2bucket;
|
||||
face_quality += __acos[int(temp_quality+.5)];
|
||||
|
||||
++valence;
|
||||
}
|
||||
|
||||
face_quality /= valence;
|
||||
|
||||
// calaculate face area
|
||||
MyMesh::Point p1, p2, p3;
|
||||
MyMesh::Scalar area;
|
||||
|
||||
#define heh halfedge_handle
|
||||
#define nheh next_halfedge_handle
|
||||
#define tvh to_vertex_handle
|
||||
#define fvh from_vertex_handle
|
||||
p1 = mesh.point(mesh.tvh(mesh.heh(f_it.handle())));
|
||||
p2 = mesh.point(mesh.fvh(mesh.heh(f_it.handle())));
|
||||
p3 = mesh.point(mesh.tvh(mesh.nheh(mesh.heh(f_it.handle()))));
|
||||
#undef heh
|
||||
#undef nheh
|
||||
#undef tvh
|
||||
#undef fvh
|
||||
|
||||
area = ((p2 - p1) % (p3 - p1)).norm();
|
||||
|
||||
// weight face_quality
|
||||
face_quality *= pow(double(area), double(.1));
|
||||
//face_quality *= area;
|
||||
|
||||
if (face_quality >= quality && !mesh.is_boundary(f_it.handle()))
|
||||
{
|
||||
quality = face_quality;
|
||||
fh = f_it.handle();
|
||||
}
|
||||
}
|
||||
|
||||
// Subdivide Face
|
||||
timer2.cont();
|
||||
subdivider.refine(fh);
|
||||
timer2.stop();
|
||||
}
|
||||
|
||||
// calculate time
|
||||
timer.stop();
|
||||
|
||||
} // uniform/adaptive?
|
||||
|
||||
// calculate maximum refinement level
|
||||
Adaptive::state_t max_level(0);
|
||||
|
||||
for (MyMesh::VertexIter v_it = mesh.vertices_begin();
|
||||
v_it != mesh.vertices_end(); ++v_it)
|
||||
{
|
||||
if (mesh.data(v_it).state() > max_level)
|
||||
max_level = mesh.data(v_it).state();
|
||||
}
|
||||
|
||||
|
||||
// output results
|
||||
std::cout << "\nDid " << i << (uniform ? " uniform " : "" )
|
||||
<< " subdivision steps in "
|
||||
<< timer.as_string()
|
||||
<< ", " << i/timer.seconds() << " steps/s\n";
|
||||
std::cout << " only refinement: " << timer2.as_string()
|
||||
<< ", " << i/timer2.seconds() << " steps/s\n\n";
|
||||
|
||||
std::cout << "Before: ";
|
||||
std::cout << n_vertices << " Vertices, ";
|
||||
std::cout << n_edges << " Edges, ";
|
||||
std::cout << n_faces << " Faces. \n";
|
||||
|
||||
std::cout << "Now : ";
|
||||
std::cout << mesh.n_vertices() << " Vertices, ";
|
||||
std::cout << mesh.n_edges() << " Edges, ";
|
||||
std::cout << mesh.n_faces() << " Faces. \n\n";
|
||||
|
||||
std::cout << "Maximum quality : " << quality << std::endl;
|
||||
std::cout << "Maximum Subdivision Level: " << max_level/subdivider.n_rules()
|
||||
<< std::endl << std::endl;
|
||||
|
||||
// ---------------------------------------- write mesh to file
|
||||
{
|
||||
if ( ofname.empty() )
|
||||
{
|
||||
std::stringstream s;
|
||||
|
||||
s << "result." << subdivider.rules_as_string("_")
|
||||
<< "-" << i << "x.off";
|
||||
s >> ofname;
|
||||
}
|
||||
|
||||
std::cout << "Output file: '" << ofname << "'.\n";
|
||||
if (!OpenMesh::IO::write_mesh(mesh, ofname, OpenMesh::IO::Options::Binary))
|
||||
{
|
||||
std::cerr << " Error writing file!\n";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// helper
|
||||
|
||||
void usage_and_exit(const std::string& _fname, int xcode)
|
||||
{
|
||||
using namespace std;
|
||||
|
||||
cout << endl
|
||||
<< "Usage: " << basename(_fname)
|
||||
<< " [Options] input-mesh [output-mesh]\n\n";
|
||||
cout << "\tAdaptively refine an input-mesh. The refined mesh is stored in\n"
|
||||
<< "\ta file named \"result.XXX.off\" (binary .off), if not specified\n"
|
||||
<< "\texplicitely (optional 2nd parameter of command line).\n\n";
|
||||
cout << "Options:\n\n";
|
||||
cout << "-m <int>\n\tAdaptively refine up to approx. <int> vertices.\n\n"
|
||||
<< "-n <int>\n\tAdaptively refine <int> times.\n\n"
|
||||
<< "-r <rule sequence>\n\tDefine a custom rule sequence.\n\n"
|
||||
<< "-l\n\tUse rule sequence for adaptive Loop.\n\n"
|
||||
<< "-s\n\tUse rule sequence for adaptive sqrt(3).\n\n"
|
||||
<< "-U\n\tRefine mesh uniformly (simulates uniform subdivision).\n\n";
|
||||
|
||||
exit(xcode);
|
||||
}
|
||||
|
||||
std::string basename(const std::string& _f)
|
||||
{
|
||||
std::string::size_type dot = _f.rfind("/");
|
||||
if (dot == std::string::npos)
|
||||
return _f;
|
||||
return _f.substr(dot+1, _f.length()-(dot+1));
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// end of file
|
||||
// ============================================================================
|
||||
Reference in New Issue
Block a user