Added small tutorial on custom properties

This commit is contained in:
Jan Möbius
2019-03-12 08:00:17 +01:00
parent c7107e1f97
commit c2792234d1
9 changed files with 245 additions and 162 deletions

View File

@@ -0,0 +1,119 @@
#ifndef FILL_PROPS_HH
#define FILL_PROPS_HH
#include <OpenMesh/Core/Utils/Property.hh>
#include "int2roman.hh"
template <typename Mesh>
bool
fill_props( Mesh& _m, OpenMesh::VPropHandleT<float> _ph, bool _check=false)
{
static float a[9] = { 1.1f, 2.2f, 3.3f, 4.4f, 5.5f, 6.6f, 7.7f, 8.8f, 9.9f };
for(typename Mesh::VertexIter it=_m.vertices_begin();
it != _m.vertices_end(); ++it)
{
const float v = a[it->idx()%9];
if ( _check && !(_m.property( _ph, *it ) == v) )
return false;
else
_m.property( _ph, *it ) = v;
}
return true;
}
template <typename Mesh>
bool
fill_props( Mesh& _m, OpenMesh::EPropHandleT<bool> _ph, bool _check=false )
{
for( typename Mesh::EdgeIter it=_m.edges_begin();
it != _m.edges_end(); ++it)
{
const size_t n = it->idx();
const bool v = ((n&(n-1))==0); // true for 0,1,2,4,8,..
if (_check && _m.property( _ph, *it ) != v)
{
std::cout << " eprop_bool: " << n << " -> "
<< _m.property(_ph, *it ) << " != " << v << std::endl;
return false;
}
else
{
_m.property( _ph, *it ) = v;
std::cout << " eprop_bool: " << n << " -> " << v << std::endl;
}
}
return true;
}
template <typename Mesh>
bool
fill_props(Mesh& _m, OpenMesh::FPropHandleT<std::string> _ph, bool _check=false)
{
for( typename Mesh::FaceIter it=_m.faces_begin();
it != _m.faces_end(); ++it)
{
const int n = (it->idx()) + 1;
_m.property( _ph, *it ) = int2roman(n);
}
return true;
}
template <typename Mesh, typename T>
bool
fill_props( Mesh& _m, OpenMesh::HPropHandleT<T> _ph, bool _check=false)
{
T v;
static float a[9] = { 1.1f, 2.2f, 3.3f, 4.4f, 5.5f, 6.6f, 7.7f, 8.8f, 9.9f };
static float b[9] = { 2.2f, 3.3f, 4.4f, 5.5f, 6.6f, 7.7f, 8.8f, 9.9f, 1.1f };
static float c[9] = { 3.3f, 4.4f, 5.5f, 6.6f, 7.7f, 8.8f, 9.9f, 1.1f, 2.2f };
static float d[9] = { 4.4f, 5.5f, 6.6f, 7.7f, 8.8f, 9.9f, 1.1f, 2.2f, 3.3f };
static double values[9] = { 0.1, 0.02, 0.003, 0.0004, 0.00005, 0.000006,
0.0000007, 0.00000008, 0.000000009 };
for( typename Mesh::HalfedgeIter it=_m.halfedges_begin();
it != _m.halfedges_end(); ++it)
{
const int n = it->idx();
v = it->idx()+1; // ival
v = values[n%9]; // dval
v = ((n&(n-1))==0); // bval
v.vec4fval[0] = a[n%9];
v.vec4fval[1] = b[n%9];
v.vec4fval[2] = c[n%9];
v.vec4fval[3] = d[n%9];
if ( _check && _m.property( _ph, *it ) != v )
return false;
else
_m.property( _ph, *it ) = v;
}
return true;
}
template <typename Mesh, typename T>
bool
fill_props( Mesh& _m, OpenMesh::MPropHandleT<T> _ph, bool _check=false)
{
for( typename Mesh::FaceIter it=_m.faces_begin(); it != _m.faces_end(); ++it)
{
const size_t idx = it->idx();
if ( _check && _m.property( _ph )[int2roman(idx+1)] != idx )
return false;
else
_m.property( _ph )[int2roman(idx+1)] = idx;
}
return true;
}
#endif

View File

@@ -0,0 +1,70 @@
#ifndef GENERATE_CUBE_HH
#define GENERATE_CUBE_HH
template <typename MeshType>
size_t generate_cube( MeshType& mesh )
{
typedef typename MeshType::VertexHandle VertexHandle;
typedef typename MeshType::Point Point;
typename MeshType::VertexHandle vhandle[8];
vhandle[0] = mesh.add_vertex(Point(-1, -1, 1));
vhandle[1] = mesh.add_vertex(Point( 1, -1, 1));
vhandle[2] = mesh.add_vertex(Point( 1, 1, 1));
vhandle[3] = mesh.add_vertex(Point(-1, 1, 1));
vhandle[4] = mesh.add_vertex(Point(-1, -1, -1));
vhandle[5] = mesh.add_vertex(Point( 1, -1, -1));
vhandle[6] = mesh.add_vertex(Point( 1, 1, -1));
vhandle[7] = mesh.add_vertex(Point(-1, 1, -1));
// generate (quadrilateral) faces
std::vector< VertexHandle > face_vhandles;
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[3]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[4]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[4]);
face_vhandles.push_back(vhandle[5]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[6]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[7]);
mesh.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[4]);
mesh.add_face(face_vhandles);
return mesh.n_vertices();
};
#endif

View File

@@ -0,0 +1,42 @@
#include <OpenMesh/Core/System/config.hh>
#if defined(OM_CC_MIPS)
# include <assert.h>
#else
# include <cassert>
#endif
#include "int2roman.hh"
std::string int2roman( size_t decimal, size_t length )
{
assert( decimal > 0 && decimal < 1000 );
const size_t nrows = 4;
const size_t ncols = 4;
static size_t table_arabs[ nrows ][ ncols ] = { { 1000, 1000, 1000, 1000 },
{ 900, 500, 400, 100 },
{ 90, 50, 40, 10 },
{ 9, 5, 4, 1 } };
static char *table_romans[ nrows ][ ncols ] = { { "M", "M", "M", "M" },
{ "CM", "D", "CD", "C" },
{ "XC", "L", "XL", "X" },
{ "IX", "V", "IV", "I" } };
size_t power; // power of ten
size_t index; // Indexes thru values to subtract
std::string roman = "";
roman.reserve(length);
for ( power = 0; power < nrows; power++ )
for ( index = 0; index < ncols; index++ )
while ( decimal >= table_arabs[ power ][ index ] )
{
roman += table_romans[ power ][ index ];
decimal -= table_arabs[ power ][ index ];
}
return roman;
}

View File

@@ -0,0 +1,8 @@
#ifndef INT2ROMAN_HH
#define INT2ROMAN_HH
#include <string>
std::string int2roman( size_t decimal, size_t length=30 );
#endif

View File

@@ -0,0 +1,345 @@
#include <iostream>
#include <string>
#include <map>
// -------------------- OpenMesh
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <OpenMesh/Core/Mesh/PolyMesh_ArrayKernelT.hh>
// -------------------- little helper
#include "generate_cube.hh"
#include "stats.hh"
#include "fill_props.hh"
// ----------------------------------------------------------------------------
// Set to 1 to use an PolyMesh type.
#define UsePolyMesh 1
// ----------------------------------------------------------------------------
using namespace OpenMesh;
// ----------------------------------------------------------------------------
typedef TriMesh_ArrayKernelT<> TriMesh;
typedef PolyMesh_ArrayKernelT<> PolyMesh;
#if UsePolyMesh
typedef PolyMesh Mesh;
#else
typedef TriMesh Mesh;
#endif
// ----------------------------------------------------------------------------
#ifndef DOXY_IGNORE_THIS
struct MyData
{
int ival;
double dval;
bool bval;
OpenMesh::Vec4f vec4fval;
MyData()
: ival(0), dval(0.0), bval(false)
{ }
MyData( const MyData& _cpy )
: ival(_cpy.ival), dval(_cpy.dval), bval(_cpy.bval),
vec4fval(_cpy.vec4fval)
{ }
// ---------- assignment
MyData& operator = (const MyData& _rhs)
{
ival = _rhs.ival;
dval = _rhs.dval;
bval = _rhs.bval;
vec4fval = _rhs.vec4fval;
return *this;
}
MyData& operator = (int _rhs) { ival = _rhs; return *this; }
MyData& operator = (double _rhs) { dval = _rhs; return *this; }
MyData& operator = (bool _rhs) { bval = _rhs; return *this; }
MyData& operator = (const OpenMesh::Vec4f& _rhs)
{ vec4fval = _rhs; return *this; }
// ---------- comparison
bool operator == (const MyData& _rhs) const
{
return ival == _rhs.ival
&& dval == _rhs.dval
&& bval == _rhs.bval
&& vec4fval == _rhs.vec4fval;
}
bool operator != (const MyData& _rhs) const { return !(*this == _rhs); }
};
#endif
// ----------------------------------------------------------------------------
typedef std::map< std::string, unsigned int > MyMap;
// ----------------------------------------------------------------------------
#ifndef DOXY_IGNORE_THIS
namespace OpenMesh {
namespace IO {
// support persistence for struct MyData
template <> struct binary<MyData>
{
typedef MyData value_type;
static const bool is_streamable = true;
// return binary size of the value
static size_t size_of(void)
{
return sizeof(int)+sizeof(double)+sizeof(bool)+sizeof(OpenMesh::Vec4f);
}
static size_t size_of(const value_type&)
{
return size_of();
}
static size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
{
size_t bytes;
bytes = IO::store( _os, _v.ival, _swap );
bytes += IO::store( _os, _v.dval, _swap );
bytes += IO::store( _os, _v.bval, _swap );
bytes += IO::store( _os, _v.vec4fval, _swap );
return _os.good() ? bytes : 0;
}
static size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
{
size_t bytes;
bytes = IO::restore( _is, _v.ival, _swap );
bytes += IO::restore( _is, _v.dval, _swap );
bytes += IO::restore( _is, _v.bval, _swap );
bytes += IO::restore( _is, _v.vec4fval, _swap );
return _is.good() ? bytes : 0;
}
};
template <> struct binary< MyMap >
{
typedef MyMap value_type;
static const bool is_streamable = true;
// return generic binary size of self, if known
static size_t size_of(void) { return UnknownSize; }
// return binary size of the value
static size_t size_of(const value_type& _v)
{
if (_v.empty())
return sizeof(unsigned int);
value_type::const_iterator it = _v.begin();
unsigned int N = _v.size();
size_t bytes = IO::size_of(N);
for(;it!=_v.end(); ++it)
{
bytes += IO::size_of( it->first );
bytes += IO::size_of( it->second );
}
return bytes;
}
static
size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
{
size_t bytes = 0;
unsigned int N = _v.size();
value_type::const_iterator it = _v.begin();
bytes += IO::store( _os, N, _swap );
for (; it != _v.end() && _os.good(); ++it)
{
bytes += IO::store( _os, it->first, _swap );
bytes += IO::store( _os, it->second, _swap );
}
return _os.good() ? bytes : 0;
}
static
size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
{
size_t bytes = 0;
unsigned int N = 0;
_v.clear();
bytes += IO::restore( _is, N, _swap );
value_type::key_type key;
value_type::mapped_type val;
for (size_t i=0; i<N && _is.good(); ++i)
{
bytes += IO::restore( _is, key, _swap );
bytes += IO::restore( _is, val, _swap );
_v[key] = val;
}
return _is.good() ? bytes : 0;
}
};
}
}
#endif
// ----------------------------------------------------------------------------
int main(void)
{
//
Mesh mesh;
// generate a geometry
generate_cube<Mesh>(mesh);
// should display 8 vertices, 18/12 edges, 12/6 faces (Tri/Poly)
mesh_stats(mesh);
// print out information about properties
mesh_property_stats(mesh);
std::cout << "Define some custom properties..\n";
OpenMesh::VPropHandleT<float> vprop_float;
OpenMesh::EPropHandleT<bool> eprop_bool;
OpenMesh::FPropHandleT<std::string> fprop_string;
OpenMesh::HPropHandleT<MyData> hprop_mydata;
OpenMesh::MPropHandleT<MyMap> mprop_map;
std::cout << ".. and registrate them at the mesh object.\n";
mesh.add_property(vprop_float, "vprop_float");
mesh.add_property(eprop_bool, "eprop_bool");
mesh.add_property(fprop_string, "fprop_string");
mesh.add_property(hprop_mydata, "hprop_mydata");
mesh.add_property(mprop_map, "mprop_map");
mesh_property_stats(mesh);
std::cout << "Now let's fill the props..\n";
fill_props(mesh, vprop_float);
fill_props(mesh, eprop_bool);
fill_props(mesh, fprop_string);
fill_props(mesh, hprop_mydata);
fill_props(mesh, mprop_map);
std::cout << "Check props..\n";
#define CHK_PROP( PH ) \
std::cout << " " << #PH << " " \
<< (fill_props(mesh, PH, true)?"ok\n":"error\n")
CHK_PROP(vprop_float);
CHK_PROP(eprop_bool);
CHK_PROP(fprop_string);
CHK_PROP(hprop_mydata);
CHK_PROP(mprop_map);
#undef CHK_PROP
std::cout << "Set persistent flag..\n";
#define SET_PERS( PH ) \
mesh.property(PH).set_persistent(true); \
std::cout << " " << #PH << " " \
<< (mesh.property(PH).persistent()?"ok\n":"failed!\n")
mesh.property(vprop_float).set_persistent(true);
std::cout << " vprop_float "
<< (mesh.property(vprop_float).persistent()?"ok\n":"failed!\n");
SET_PERS( eprop_bool );
SET_PERS( fprop_string );
SET_PERS( hprop_mydata );
mesh.mproperty(mprop_map).set_persistent(true);
std::cout << " mprop_map "
<< (mesh.mproperty(mprop_map).persistent()?"ok\n":"failed!\n");
std::cout << "Write mesh..";
if (IO::write_mesh( mesh, "persistence-check.om" ))
std::cout << " ok\n";
else
{
std::cout << " failed\n";
return 1;
}
std::cout << "Clear mesh\n";
mesh.clear();
mesh_stats(mesh, " ");
std::cout << "Read back mesh..";
try
{
if (IO::read_mesh( mesh, "persistence-check.om" ))
std::cout << " ok\n";
else
{
std::cout << " failed!\n";
return 1;
}
mesh_stats(mesh, " ");
}
catch( std::exception &x )
{
std::cerr << x.what() << std::endl;
return 1;
}
std::cout << "Check props..\n";
#define CHK_PROP( PH ) \
std::cout << " " << #PH << " " \
<< (fill_props(mesh, PH, true)?"ok\n":"error\n")
CHK_PROP(vprop_float);
CHK_PROP(eprop_bool);
CHK_PROP(fprop_string);
CHK_PROP(hprop_mydata);
CHK_PROP(mprop_map);
#undef CHK_PROP
return 0;
}
// end of file
// ============================================================================

View File

@@ -0,0 +1,20 @@
#ifndef STATS_HH
#define STATS_HH
template <typename Mesh>
void mesh_stats( Mesh& _m, const std::string& prefix = "" )
{
std::cout << prefix
<< _m.n_vertices() << " vertices, "
<< _m.n_edges() << " edges, "
<< _m.n_faces() << " faces\n";
}
template <typename Mesh>
void mesh_property_stats(Mesh& _m)
{
std::cout << "Current set of properties:\n";
_m.property_stats(std::cout);
}
#endif