/*===========================================================================*\ * * * OpenMesh * * Copyright (C) 2001-2012 by Computer Graphics Group, RWTH Aachen * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * * * * OpenMesh is free software: you can redistribute it and/or modify * * it under the terms of the GNU Lesser General Public License as * * published by the Free Software Foundation, either version 3 of * * the License, or (at your option) any later version with the * * following exceptions: * * * * If other files instantiate templates or use macros * * or inline functions from this file, or you compile this file and * * link it with other files to produce an executable, this file does * * not by itself cause the resulting executable to be covered by the * * GNU Lesser General Public License. This exception does not however * * invalidate any other reasons why the executable file might be * * covered by the GNU Lesser General Public License. * * * * OpenMesh is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU Lesser General Public License for more details. * * * * You should have received a copy of the GNU LesserGeneral Public * * License along with OpenMesh. If not, * * see . * * * \*===========================================================================*/ /*===========================================================================*\ * * * $Revision$ * * $Date$ * * * \*===========================================================================*/ /** \file ModHausdorffT.cc */ //============================================================================= // // CLASS ModHausdorffT - IMPLEMENTATION // //============================================================================= #define OPENMESH_DECIMATER_MODHAUSDORFFT_C //== INCLUDES ================================================================= #include "ModHausdorffT.hh" #ifdef USE_OPENMP #include #endif //== NAMESPACES =============================================================== namespace OpenMesh { namespace Decimater { //== IMPLEMENTATION ========================================================== template typename ModHausdorffT::Scalar ModHausdorffT:: distPointTriangleSquared( const Point& _p, const Point& _v0, const Point& _v1, const Point& _v2, Point& _nearestPoint ) { const Point v0v1 = _v1 - _v0; const Point v0v2 = _v2 - _v0; const Point n = v0v1 % v0v2; // not normalized ! const double d = n.sqrnorm(); // Check if the triangle is degenerated if (d < FLT_MIN && d > -FLT_MIN) { // std::cerr << "distPointTriangleSquared: Degenerated triangle !\n"; // std::cerr << "Points are : " << _v0 << " " << _v1 << " " << _v2 << std::endl; // std::cerr << "d is " << d << std::endl; return -1.0; } const double invD = 1.0 / d; // these are not needed for every point, should still perform // better with many points against one triangle const Point v1v2 = _v2 - _v1; const double inv_v0v2_2 = 1.0 / v0v2.sqrnorm(); const double inv_v0v1_2 = 1.0 / v0v1.sqrnorm(); const double inv_v1v2_2 = 1.0 / v1v2.sqrnorm(); Point v0p = _p - _v0; Point t = v0p % n; double s01, s02, s12; const double a = (t | v0v2) * -invD; const double b = (t | v0v1) * invD; if (a < 0) { // Calculate the distance to an edge or a corner vertex s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 < 0.0) { s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 <= 0.0) { v0p = _v0; } else if (s01 >= 1.0) { v0p = _v1; } else { v0p = _v0 + v0v1 * s01; } } else if (s02 > 1.0) { s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { v0p = _v2; } else if (s12 <= 0.0) { v0p = _v1; } else { v0p = _v1 + v1v2 * s12; } } else { v0p = _v0 + v0v2 * s02; } } else if (b < 0.0) { // Calculate the distance to an edge or a corner vertex s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 < 0.0) { const Point n = v0v1 % v0v2; // not normalized ! s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 <= 0.0) { v0p = _v0; } else if (s02 >= 1.0) { v0p = _v2; } else { v0p = _v0 + v0v2 * s02; } } else if (s01 > 1.0) { s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { v0p = _v2; } else if (s12 <= 0.0) { v0p = _v1; } else { v0p = _v1 + v1v2 * s12; } } else { v0p = _v0 + v0v1 * s01; } } else if (a+b > 1.0) { // Calculate the distance to an edge or a corner vertex s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2; if (s12 >= 1.0) { s02 = ( v0v2 | v0p ) * inv_v0v2_2; if (s02 <= 0.0) { v0p = _v0; } else if (s02 >= 1.0) { v0p = _v2; } else { v0p = _v0 + v0v2*s02; } } else if (s12 <= 0.0) { s01 = ( v0v1 | v0p ) * inv_v0v1_2; if (s01 <= 0.0) { v0p = _v0; } else if (s01 >= 1.0) { v0p = _v1; } else { v0p = _v0 + v0v1 * s01; } } else { v0p = _v1 + v1v2 * s12; } } else { // Calculate the distance to an interior point of the triangle _nearestPoint = _p - n*((n|v0p) * invD); return (_nearestPoint - _p).sqrnorm(); } _nearestPoint = v0p; return (_nearestPoint - _p).sqrnorm(); } template void ModHausdorffT:: initialize() { typename Mesh::FIter f_it(mesh_.faces_begin()), f_end(mesh_.faces_end()); for (; f_it!=f_end; ++f_it) mesh_.property(points_, f_it).clear(); } //----------------------------------------------------------------------------- template float ModHausdorffT:: collapse_priority(const CollapseInfo& _ci) { std::vector faces; faces.reserve(20); typename Mesh::VertexFaceIter vf_it; typename Mesh::FaceHandle fh; typename Mesh::Scalar sqr_tolerace = tolerance_*tolerance_; typename Mesh::Point dummy; typename Mesh::CFVIter fv_it; bool ok; // Clear the temporary point storage tmp_points_.clear(); // collect all points to be tested // collect all faces to be tested against for (vf_it=mesh_.vf_iter(_ci.v0); vf_it; ++vf_it) { fh = vf_it.handle(); if (fh != _ci.fl && fh != _ci.fr) faces.push_back(fh); Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); } // add point to be removed tmp_points_.push_back(_ci.p0); // setup iterators typename std::vector::iterator fh_it, fh_end(faces.end()); typename Points::const_iterator p_it, p_end(tmp_points_.end()); // simulate collapse mesh_.set_point(_ci.v0, _ci.p1); // for each point: try to find a face such that error is < tolerance ok = true; for (p_it=tmp_points_.begin(); ok && p_it!=p_end; ++p_it) { ok = false; for (fh_it=faces.begin(); !ok && fh_it!=fh_end; ++fh_it) { const Point& p0 = mesh_.point(fv_it=mesh_.cfv_iter(*fh_it)); const Point& p1 = mesh_.point(++fv_it); const Point& p2 = mesh_.point(++fv_it); if ( distPointTriangleSquared(*p_it, p0, p1, p2, dummy) <= sqr_tolerace) ok = true; } } // undo simulation changes mesh_.set_point(_ci.v0, _ci.p0); return ( ok ? Base::LEGAL_COLLAPSE : Base::ILLEGAL_COLLAPSE ); } //----------------------------------------------------------------------------- template void ModHausdorffT::set_error_tolerance_factor(double _factor) { if (_factor >= 0.0 && _factor <= 1.0) { // the smaller the factor, the smaller tolerance gets // thus creating a stricter constraint // division by error_tolerance_factor_ is for normalization Scalar tolerance = tolerance_ * _factor / this->error_tolerance_factor_; set_tolerance(tolerance); this->error_tolerance_factor_ = _factor; } } //----------------------------------------------------------------------------- template void ModHausdorffT:: postprocess_collapse(const CollapseInfo& _ci) { typename Mesh::VertexFaceIter vf_it; FaceHandle fh; std::vector faces; // collect points & neighboring triangles tmp_points_.clear(); faces.reserve(20); // collect active faces and their points for (vf_it=mesh_.vf_iter(_ci.v1); vf_it; ++vf_it) { fh = vf_it.handle(); faces.push_back(fh); Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } if (faces.empty()) return; // should not happen anyway... // collect points of the 2 deleted faces if ((fh=_ci.fl).is_valid()) { Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } if ((fh=_ci.fr).is_valid()) { Points& pts = mesh_.property(points_, fh); std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_)); pts.clear(); } // add the deleted point tmp_points_.push_back(_ci.p0); // setup iterators typename std::vector::iterator fh_it, fh_end(faces.end()); typename Points::const_iterator p_it, p_end(tmp_points_.end()); // re-distribute points Scalar emin, e; Point dummy; typename Mesh::CFVIter fv_it; for (p_it=tmp_points_.begin(); p_it!=p_end; ++p_it) { emin = FLT_MAX; #ifdef USE_OPENMP int facesCount = faces.size(); #pragma omp parallel for private(e) shared(emin) for (int i = 0; i < facesCount; ++i) { const Point& p0 = mesh_.point(fv_it=mesh_.cfv_iter(faces[i])); const Point& p1 = mesh_.point(++fv_it); const Point& p2 = mesh_.point(++fv_it); e = distPointTriangleSquared(*p_it, p0, p1, p2, dummy); if (e < emin) { emin = e; fh = faces[i]; } } #else for (fh_it=faces.begin(); fh_it!=fh_end; ++fh_it) { const Point& p0 = mesh_.point(fv_it=mesh_.cfv_iter(*fh_it)); const Point& p1 = mesh_.point(++fv_it); const Point& p2 = mesh_.point(++fv_it); e = distPointTriangleSquared(*p_it, p0, p1, p2, dummy); if (e < emin) { emin = e; fh = *fh_it; } } #endif mesh_.property(points_, fh).push_back(*p_it); } } //----------------------------------------------------------------------------- template typename ModHausdorffT::Scalar ModHausdorffT:: compute_sqr_error(FaceHandle _fh, const Point& _p) const { typename Mesh::CFVIter fv_it = mesh_.cfv_iter(_fh); const Point& p0 = mesh_.point(fv_it); const Point& p1 = mesh_.point(++fv_it); const Point& p2 = mesh_.point(++fv_it); const Points& points = mesh_.property(points_, _fh); typename Points::const_iterator p_it = points.begin(); typename Points::const_iterator p_end = points.end(); Point dummy; Scalar e; Scalar emax = distPointTriangleSquared(_p, p0, p1, p2, dummy); #ifdef USE_OPENMP int pointsCount = points.size(); #pragma omp parallel for private(e) shared(emax) for (int i = 0; i < pointsCount; ++i) { e = distPointTriangleSquared(points[i], p0, p1, p2, dummy); if (e > emax) emax = e; } #else for (; p_it!=p_end; ++p_it) { e = distPointTriangleSquared(*p_it, p0, p1, p2, dummy); if (e > emax) emax = e; } #endif return emax; } //============================================================================= } } //=============================================================================