/* ========================================================================= * * * * OpenMesh * * Copyright (c) 2001-2015, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * * ========================================================================= */ /** \file Sqrt3InterpolatingSubdividerLabsikGreinerT.hh * * Interpolating Labsik Greiner Subdivider as described in * "Interpolating sqrt(3) subdivision" Labsik & Greiner, 2000 * * Clement Courbet - clement.courbet@ecp.fr * */ //============================================================================= // // CLASS InterpolatingSqrt3LGT // //============================================================================= #ifndef OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH #define OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH //== INCLUDES ================================================================= #include #include #include #if defined(_DEBUG) || defined(DEBUG) // Makes life lot easier, when playing/messing around with low-level topology // changing methods of OpenMesh # include # define ASSERT_CONSISTENCY( T, m ) \ assert(OpenMesh::Utils::MeshCheckerT(m).check()) #else # define ASSERT_CONSISTENCY( T, m ) #endif // -------------------- STL #include #if defined(OM_CC_MIPS) # include #else # include #endif //#define MIRROR_TRIANGLES //#define MIN_NORM //== NAMESPACE ================================================================ namespace OpenMesh { // BEGIN_NS_OPENMESH namespace Subdivider { // BEGIN_NS_DECIMATER namespace Uniform { // BEGIN_NS_UNIFORM //== CLASS DEFINITION ========================================================= /** %Uniform Interpolating Sqrt3 subdivision algorithm * * Implementation of the interpolating Labsik Greiner Subdivider as described in * "interpolating sqrt(3) subdivision" Labsik & Greiner, 2000 * * Clement Courbet - clement.courbet@ecp.fr */ template class InterpolatingSqrt3LGT : public SubdividerT< MeshType, RealType > { public: typedef RealType real_t; typedef MeshType mesh_t; typedef SubdividerT< mesh_t, real_t > parent_t; typedef std::vector< std::vector > weights_t; public: InterpolatingSqrt3LGT(void) : parent_t() { init_weights(); } InterpolatingSqrt3LGT(MeshType &_m) : parent_t(_m) { init_weights(); } virtual ~InterpolatingSqrt3LGT() {} public: const char *name() const override { return "Uniform Interpolating Sqrt3"; } /// Pre-compute weights void init_weights(size_t _max_valence=50) { weights_.resize(_max_valence); weights_[3].resize(4); weights_[3][0] = real_t(+4.0/27); weights_[3][1] = real_t(-5.0/27); weights_[3][2] = real_t(+4.0/27); weights_[3][3] = real_t(+8.0/9); weights_[4].resize(5); weights_[4][0] = real_t(+2.0/9); weights_[4][1] = real_t(-1.0/9); weights_[4][2] = real_t(-1.0/9); weights_[4][3] = real_t(+2.0/9); weights_[4][4] = real_t(+7.0/9); for(unsigned int K=5; K<_max_valence; ++K) { weights_[K].resize(K+1); double aH = 2.0*cos(M_PI/static_cast(K))/3.0; weights_[K][K] = static_cast(1.0 - aH*aH); for(unsigned int i=0; i((aH*aH + 2.0*aH*cos(2.0*static_cast(i)*M_PI/static_cast(K) + M_PI/static_cast(K)) + 2.0*aH*aH*cos(4.0*static_cast(i)*M_PI/static_cast(K) + 2.0*M_PI/static_cast(K)))/static_cast(K)); } } //just to be sure: weights_[6].resize(0); } protected: bool prepare( MeshType& _m ) override { _m.request_edge_status(); _m.add_property( fp_pos_ ); _m.add_property( ep_nv_ ); _m.add_property( mp_gen_ ); _m.property( mp_gen_ ) = 0; return _m.has_edge_status() && ep_nv_.is_valid() && mp_gen_.is_valid(); } bool cleanup( MeshType& _m ) override { _m.release_edge_status(); _m.remove_property( fp_pos_ ); _m.remove_property( ep_nv_ ); _m.remove_property( mp_gen_ ); return true; } bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true) override { ///TODO:Implement fixed positions typename MeshType::VertexIter vit; typename MeshType::VertexVertexIter vvit; typename MeshType::EdgeIter eit; typename MeshType::FaceIter fit; typename MeshType::FaceVertexIter fvit; typename MeshType::FaceHalfedgeIter fheit; typename MeshType::VertexHandle vh; typename MeshType::HalfedgeHandle heh; typename MeshType::Point pos(0,0,0), zero(0,0,0); size_t &gen = _m.property( mp_gen_ ); for (size_t l=0; l<_n; ++l) { // tag existing edges for (eit=_m.edges_begin(); eit != _m.edges_end();++eit) { _m.status( *eit ).set_tagged( true ); if ( (gen%2) && _m.is_boundary(*eit) ) compute_new_boundary_points( _m, *eit ); // *) creates new vertices } // insert new vertices, and store pos in vp_pos_ typename MeshType::FaceIter fend = _m.faces_end(); for (fit = _m.faces_begin();fit != fend; ++fit) { if (_m.is_boundary(*fit)) { if(gen%2) _m.property(fp_pos_, *fit).invalidate(); else { //find the interior boundary halfedge for( heh = _m.halfedge_handle(*fit); !_m.is_boundary( _m.opposite_halfedge_handle(heh) ); heh = _m.next_halfedge_handle(heh) ) ; assert(_m.is_boundary( _m.opposite_halfedge_handle(heh) )); pos = zero; //check for two boundaries case: if( _m.is_boundary(_m.next_halfedge_handle(heh)) || _m.is_boundary(_m.prev_halfedge_handle(heh)) ) { if(_m.is_boundary(_m.prev_halfedge_handle(heh))) heh = _m.prev_halfedge_handle(heh); //ensure that the boundary halfedges are heh and heh->next //check for three boundaries case: if(_m.is_boundary(_m.next_halfedge_handle(_m.next_halfedge_handle(heh)))) { //three boundaries, use COG of triangle pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh))); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh))); } else { #ifdef MIRROR_TRIANGLES //two boundaries, mirror two triangles pos += real_t(2.0/9) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh))); pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh))); pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))))); #else pos += real_t(7.0/24) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh))); pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh))); pos += real_t(-1.0/24) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))))); #endif } } else { vh = _m.to_vertex_handle(_m.next_halfedge_handle(heh)); //check last vertex regularity if((_m.valence(vh) == 6) || _m.is_boundary(vh)) { #ifdef MIRROR_TRIANGLES //use regular rule and mirror one triangle pos += real_t(5.0/9) * _m.point(vh); pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh))); pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh))))); pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))))); #else #ifdef MIN_NORM pos += real_t(1.0/9) * _m.point(vh); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh))); pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh))))); pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))))); #else pos += real_t(1.0/2) * _m.point(vh); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh)); pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh))); pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh))))); pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))))); #endif #endif } else { //irregular setting, use usual irregular rule unsigned int K = _m.valence(vh); pos += weights_[K][K]*_m.point(vh); heh = _m.opposite_halfedge_handle( _m.next_halfedge_handle(heh) ); for(unsigned int i = 0; iP3 (heh) in P2->pl (heh) and pl->P3 boundary_split( _m, heh, vhl ); // split edge pl_P3 = _m.next_halfedge_handle( heh ); // store next halfedge handle boundary_split( _m, heh ); // split face // split pl->P3 in pl->pr and pr->P3 boundary_split( _m, pl_P3, vhr ); boundary_split( _m, pl_P3 ); assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() ); assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() ); } void boundary_split(MeshType& _m, const typename MeshType::HalfedgeHandle& _heh, const typename MeshType::VertexHandle& _vh) { assert( _m.is_boundary( _m.edge_handle(_heh) ) ); typename MeshType::HalfedgeHandle heh(_heh), opp_heh( _m.opposite_halfedge_handle(_heh) ), new_heh, opp_new_heh; typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh)); typename MeshType::HalfedgeHandle t_heh; /* * P5 * * * /|\ * / \ * / \ * / \ * / \ * /_ heh new \ * *-----\*-----\*\-----* * ^ ^ t_heh * _vh to_vh * * P1 P2 P3 P4 */ // Re-Setting Handles // find halfedge point from P4 to P3 for(t_heh = heh; _m.next_halfedge_handle(t_heh) != opp_heh; t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh))) {} assert( _m.is_boundary( t_heh ) ); new_heh = _m.new_edge( _vh, to_vh ); opp_new_heh = _m.opposite_halfedge_handle(new_heh); // update halfedge connectivity _m.set_next_halfedge_handle(t_heh, opp_new_heh); // P4-P3 -> P3-P2 _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh)); // P2-P3 -> P3-P5 _m.set_next_halfedge_handle(heh, new_heh); // P1-P2 -> P2-P3 _m.set_next_halfedge_handle(opp_new_heh, opp_heh); // P3-P2 -> P2-P1 // both opposite halfedges point to same face _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh)); // let heh finally point to new inserted vertex _m.set_vertex_handle(heh, _vh); // let heh and new_heh point to same face _m.set_face_handle(new_heh, _m.face_handle(heh)); // let opp_new_heh be the new outgoing halfedge for to_vh // (replaces for opp_heh) _m.set_halfedge_handle( to_vh, opp_new_heh ); // let opp_heh be the outgoing halfedge for _vh _m.set_halfedge_handle( _vh, opp_heh ); } void boundary_split( MeshType& _m, const typename MeshType::HalfedgeHandle& _heh) { assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) ); typename MeshType::HalfedgeHandle heh(_heh), n_heh(_m.next_halfedge_handle(heh)); typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh)); typename MeshType::HalfedgeHandle heh2(_m.new_edge(to_vh, _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))), heh3(_m.opposite_halfedge_handle(heh2)); typename MeshType::FaceHandle new_fh(_m.new_face()), fh(_m.face_handle(heh)); // Relink (half)edges _m.set_face_handle(heh, new_fh); _m.set_face_handle(heh2, new_fh); _m.set_next_halfedge_handle(heh2, _m.next_halfedge_handle(_m.next_halfedge_handle(n_heh))); _m.set_next_halfedge_handle(heh, heh2); _m.set_face_handle( _m.next_halfedge_handle(heh2), new_fh); _m.set_next_halfedge_handle(heh3, n_heh); _m.set_next_halfedge_handle(_m.next_halfedge_handle(n_heh), heh3); _m.set_face_handle(heh3, fh); _m.set_halfedge_handle( fh, n_heh); _m.set_halfedge_handle(new_fh, heh); } private: weights_t weights_; OpenMesh::FPropHandleT< typename MeshType::VertexHandle > fp_pos_; OpenMesh::EPropHandleT< std::pair< typename MeshType::VertexHandle, typename MeshType::VertexHandle> > ep_nv_; OpenMesh::MPropHandleT< size_t > mp_gen_; }; //============================================================================= } // END_NS_UNIFORM } // END_NS_SUBDIVIDER } // END_NS_OPENMESH //============================================================================= #endif // OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH //=============================================================================