/* ========================================================================= * * * * OpenMesh * * Copyright (c) 2001-2015, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * * ========================================================================= */ /** \file Sqrt3T.hh */ //============================================================================= // // CLASS Sqrt3T // //============================================================================= #ifndef OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH #define OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH //== INCLUDES ================================================================= #include #include #include #if defined(_DEBUG) || defined(DEBUG) // Makes life lot easier, when playing/messing around with low-level topology // changing methods of OpenMesh # include # define ASSERT_CONSISTENCY( T, m ) \ assert(OpenMesh::Utils::MeshCheckerT(m).check()) #else # define ASSERT_CONSISTENCY( T, m ) #endif // -------------------- STL #include #if defined(OM_CC_MIPS) # include #else # include #endif //== NAMESPACE ================================================================ namespace OpenMesh { // BEGIN_NS_OPENMESH namespace Subdivider { // BEGIN_NS_DECIMATER namespace Uniform { // BEGIN_NS_DECIMATER //== CLASS DEFINITION ========================================================= /** %Uniform Sqrt3 subdivision algorithm * * Implementation as described in * * L. Kobbelt, "Sqrt(3) subdivision", Proceedings of SIGGRAPH 2000. */ template class Sqrt3T : public SubdividerT< MeshType, RealType > { public: typedef RealType real_t; typedef MeshType mesh_t; typedef SubdividerT< mesh_t, real_t > parent_t; typedef std::pair< real_t, real_t > weight_t; typedef std::vector< std::pair > weights_t; public: Sqrt3T(void) : parent_t(), _1over3( real_t(1.0/3.0) ), _1over27( real_t(1.0/27.0) ) { init_weights(); } explicit Sqrt3T(MeshType &_m) : parent_t(_m), _1over3( real_t(1.0/3.0) ), _1over27( real_t(1.0/27.0) ) { init_weights(); } virtual ~Sqrt3T() {} public: const char *name() const override { return "Uniform Sqrt3"; } /// Pre-compute weights void init_weights(size_t _max_valence=50) { weights_.resize(_max_valence); std::generate(weights_.begin(), weights_.end(), compute_weight()); } protected: bool prepare( MeshType& _m ) override { _m.request_edge_status(); _m.add_property( vp_pos_ ); _m.add_property( ep_nv_ ); _m.add_property( mp_gen_ ); _m.property( mp_gen_ ) = 0; return _m.has_edge_status() && vp_pos_.is_valid() && ep_nv_.is_valid() && mp_gen_.is_valid(); } bool cleanup( MeshType& _m ) override { _m.release_edge_status(); _m.remove_property( vp_pos_ ); _m.remove_property( ep_nv_ ); _m.remove_property( mp_gen_ ); return true; } bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true) override { ///TODO:Implement fixed positions typename MeshType::VertexIter vit; typename MeshType::VertexVertexIter vvit; typename MeshType::EdgeIter eit; typename MeshType::FaceIter fit; typename MeshType::FaceVertexIter fvit; typename MeshType::VertexHandle vh; typename MeshType::HalfedgeHandle heh; typename MeshType::Point pos(0,0,0), zero(0,0,0); size_t &gen = _m.property( mp_gen_ ); for (size_t l=0; l<_n; ++l) { // tag existing edges for (eit=_m.edges_begin(); eit != _m.edges_end();++eit) { _m.status( *eit ).set_tagged( true ); if ( (gen%2) && _m.is_boundary(*eit) ) compute_new_boundary_points( _m, *eit ); // *) creates new vertices } // do relaxation of old vertices, but store new pos in property vp_pos_ for (vit=_m.vertices_begin(); vit!=_m.vertices_end(); ++vit) { if ( _m.is_boundary(*vit) ) { if ( gen%2 ) { heh = _m.halfedge_handle(*vit); if (heh.is_valid()) // skip isolated newly inserted vertices *) { typename OpenMesh::HalfedgeHandle prev_heh = _m.prev_halfedge_handle(heh); assert( _m.is_boundary(heh ) ); assert( _m.is_boundary(prev_heh) ); pos = _m.point(_m.to_vertex_handle(heh)); pos += _m.point(_m.from_vertex_handle(prev_heh)); pos *= real_t(4.0); pos += real_t(19.0) * _m.point( *vit ); pos *= _1over27; _m.property( vp_pos_, *vit ) = pos; } } else _m.property( vp_pos_, *vit ) = _m.point( *vit ); } else { size_t valence=0; pos = zero; for ( vvit = _m.vv_iter(*vit); vvit.is_valid(); ++vvit) { pos += _m.point( *vvit ); ++valence; } pos *= weights_[ valence ].second; pos += weights_[ valence ].first * _m.point(*vit); _m.property( vp_pos_, *vit ) = pos; } } // insert new vertices, but store pos in vp_pos_ typename MeshType::FaceIter fend = _m.faces_end(); for (fit = _m.faces_begin();fit != fend; ++fit) { if ( (gen%2) && _m.is_boundary(*fit)) { boundary_split( _m, *fit ); } else { fvit = _m.fv_iter( *fit ); pos = _m.point( *fvit); pos += _m.point(*(++fvit)); pos += _m.point(*(++fvit)); pos *= _1over3; vh = _m.add_vertex( zero ); _m.property( vp_pos_, vh ) = pos; _m.split( *fit, vh ); } } // commit new positions (now iterating over all vertices) for (vit=_m.vertices_begin();vit != _m.vertices_end(); ++vit) _m.set_point(*vit, _m.property( vp_pos_, *vit ) ); // flip old edges for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit) if ( _m.status( *eit ).tagged() && !_m.is_boundary( *eit ) ) _m.flip(*eit); // Now we have an consistent mesh! ASSERT_CONSISTENCY( MeshType, _m ); // increase generation by one ++gen; } return true; } private: /// Helper functor to compute weights for sqrt(3)-subdivision /// \internal struct compute_weight { compute_weight() : valence(-1) { } weight_t operator() (void) { #if !defined(OM_CC_MIPS) using std::cos; #endif if (++valence) { real_t alpha = real_t( (4.0-2.0*cos(2.0*M_PI / real_t(valence)) )/9.0 ); return weight_t( real_t(1)-alpha, alpha/real_t(valence) ); } return weight_t(real_t(0.0), real_t(0.0) ); } int valence; }; private: // Pre-compute location of new boundary points for odd generations // and store them in the edge property ep_nv_; void compute_new_boundary_points( MeshType& _m, const typename MeshType::EdgeHandle& _eh) { assert( _m.is_boundary(_eh) ); typename MeshType::HalfedgeHandle heh; typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr; typename MeshType::Point zero(0,0,0), P1, P2, P3, P4; /* // *---------*---------* // / \ / \ / \ // / \ / \ / \ // / \ / \ / \ // / \ / \ / \ // *---------*--#---#--*---------* // // ^ ^ ^ ^ ^ ^ // P1 P2 pl pr P3 P4 */ // get halfedge pointing from P3 to P2 (outer boundary halfedge) heh = _m.halfedge_handle(_eh, _m.is_boundary(_m.halfedge_handle(_eh,1))); assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) ); assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) ); vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) ); vh2 = _m.to_vertex_handle( heh ); vh3 = _m.from_vertex_handle( heh ); vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh )); P1 = _m.point(vh1); P2 = _m.point(vh2); P3 = _m.point(vh3); P4 = _m.point(vh4); vhl = _m.add_vertex(zero); vhr = _m.add_vertex(zero); _m.property(vp_pos_, vhl ) = (P1 + real_t(16.0f) * P2 + real_t(10.0f) * P3) * _1over27; _m.property(vp_pos_, vhr ) = ( real_t(10.0f) * P2 + real_t(16.0f) * P3 + P4) * _1over27; _m.property(ep_nv_, _eh).first = vhl; _m.property(ep_nv_, _eh).second = vhr; } void boundary_split( MeshType& _m, const typename MeshType::FaceHandle& _fh ) { assert( _m.is_boundary(_fh) ); typename MeshType::VertexHandle vhl, vhr; typename MeshType::FaceEdgeIter fe_it; typename MeshType::HalfedgeHandle heh; // find boundary edge for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {}; // use precomputed, already inserted but not linked vertices vhl = _m.property(ep_nv_, *fe_it).first; vhr = _m.property(ep_nv_, *fe_it).second; /* // *---------*---------* // / \ / \ / \ // / \ / \ / \ // / \ / \ / \ // / \ / \ / \ // *---------*--#---#--*---------* // // ^ ^ ^ ^ ^ ^ // P1 P2 pl pr P3 P4 */ // get halfedge pointing from P2 to P3 (inner boundary halfedge) heh = _m.halfedge_handle(*fe_it, _m.is_boundary(_m.halfedge_handle(*fe_it,0))); typename MeshType::HalfedgeHandle pl_P3; // split P2->P3 (heh) in P2->pl (heh) and pl->P3 boundary_split( _m, heh, vhl ); // split edge pl_P3 = _m.next_halfedge_handle( heh ); // store next halfedge handle boundary_split( _m, heh ); // split face // split pl->P3 in pl->pr and pr->P3 boundary_split( _m, pl_P3, vhr ); boundary_split( _m, pl_P3 ); assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() ); assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() ); } void boundary_split(MeshType& _m, const typename MeshType::HalfedgeHandle& _heh, const typename MeshType::VertexHandle& _vh) { assert( _m.is_boundary( _m.edge_handle(_heh) ) ); typename MeshType::HalfedgeHandle heh(_heh), opp_heh( _m.opposite_halfedge_handle(_heh) ), new_heh, opp_new_heh; typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh)); typename MeshType::HalfedgeHandle t_heh; /* * P5 * * * /|\ * / \ * / \ * / \ * / \ * /_ heh new \ * *-----\*-----\*\-----* * ^ ^ t_heh * _vh to_vh * * P1 P2 P3 P4 */ // Re-Setting Handles // find halfedge point from P4 to P3 for(t_heh = heh; _m.next_halfedge_handle(t_heh) != opp_heh; t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh))) {} assert( _m.is_boundary( t_heh ) ); new_heh = _m.new_edge( _vh, to_vh ); opp_new_heh = _m.opposite_halfedge_handle(new_heh); // update halfedge connectivity _m.set_next_halfedge_handle(t_heh, opp_new_heh); // P4-P3 -> P3-P2 // P2-P3 -> P3-P5 _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh)); _m.set_next_halfedge_handle(heh, new_heh); // P1-P2 -> P2-P3 _m.set_next_halfedge_handle(opp_new_heh, opp_heh); // P3-P2 -> P2-P1 // both opposite halfedges point to same face _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh)); // let heh finally point to new inserted vertex _m.set_vertex_handle(heh, _vh); // let heh and new_heh point to same face _m.set_face_handle(new_heh, _m.face_handle(heh)); // let opp_new_heh be the new outgoing halfedge for to_vh // (replaces for opp_heh) _m.set_halfedge_handle( to_vh, opp_new_heh ); // let opp_heh be the outgoing halfedge for _vh _m.set_halfedge_handle( _vh, opp_heh ); } void boundary_split( MeshType& _m, const typename MeshType::HalfedgeHandle& _heh) { assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) ); typename MeshType::HalfedgeHandle heh(_heh), n_heh(_m.next_halfedge_handle(heh)); typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh)); typename MeshType::HalfedgeHandle heh2(_m.new_edge(to_vh, _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))), heh3(_m.opposite_halfedge_handle(heh2)); typename MeshType::FaceHandle new_fh(_m.new_face()), fh(_m.face_handle(heh)); // Relink (half)edges #define set_next_heh set_next_halfedge_handle #define next_heh next_halfedge_handle _m.set_face_handle(heh, new_fh); _m.set_face_handle(heh2, new_fh); _m.set_next_heh(heh2, _m.next_heh(_m.next_heh(n_heh))); _m.set_next_heh(heh, heh2); _m.set_face_handle( _m.next_heh(heh2), new_fh); // _m.set_face_handle( _m.next_heh(_m.next_heh(heh2)), new_fh); _m.set_next_heh(heh3, n_heh); _m.set_next_heh(_m.next_halfedge_handle(n_heh), heh3); _m.set_face_handle(heh3, fh); // _m.set_face_handle(n_heh, fh); _m.set_halfedge_handle( fh, n_heh); _m.set_halfedge_handle(new_fh, heh); #undef set_next_halfedge_handle #undef next_halfedge_handle } private: weights_t weights_; OpenMesh::VPropHandleT< typename MeshType::Point > vp_pos_; OpenMesh::EPropHandleT< std::pair< typename MeshType::VertexHandle, typename MeshType::VertexHandle> > ep_nv_; OpenMesh::MPropHandleT< size_t > mp_gen_; const real_t _1over3; const real_t _1over27; }; //============================================================================= } // END_NS_UNIFORM } // END_NS_SUBDIVIDER } // END_NS_OPENMESH //============================================================================= #endif // OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH //=============================================================================