/* ========================================================================= * * * * OpenMesh * * Copyright (c) 2001-2015, RWTH-Aachen University * * Department of Computer Graphics and Multimedia * * All rights reserved. * * www.openmesh.org * * * *---------------------------------------------------------------------------* * This file is part of OpenMesh. * *---------------------------------------------------------------------------* * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions * * are met: * * * * 1. Redistributions of source code must retain the above copyright notice, * * this list of conditions and the following disclaimer. * * * * 2. Redistributions in binary form must reproduce the above copyright * * notice, this list of conditions and the following disclaimer in the * * documentation and/or other materials provided with the distribution. * * * * 3. Neither the name of the copyright holder nor the names of its * * contributors may be used to endorse or promote products derived from * * this software without specific prior written permission. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * * ========================================================================= */ /*===========================================================================*\ * * * $Revision$ * * $Date$ * * * \*===========================================================================*/ /** \file Uniform/Composite/CompositeT.hh */ //============================================================================= // // CLASS CompositeT // //============================================================================= #ifndef OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH #define OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_HH //== INCLUDES ================================================================= #include #include // -------------------- #include //== NAMESPACE ================================================================ namespace OpenMesh { // BEGIN_NS_OPENMESH namespace Subdivider { // BEGIN_NS_DECIMATER namespace Uniform { // BEGIN_NS_UNIFORM //== CLASS DEFINITION ========================================================= /** This class provides the composite subdivision rules for the uniform case. * * To create a subdivider derive from this class and overload the functions * name() and apply_rules(). In the latter one call the wanted rules. * * For details on the composite scheme refer to * - P. Oswald, * P. Schroeder "Composite primal/dual sqrt(3)-subdivision schemes", * CAGD 20, 3, 2003, 135--164 * \note Not all rules are implemented! * \see class Adaptive::CompositeT */ template class CompositeT : public SubdividerT< MeshType, RealType > { public: typedef RealType real_t; typedef MeshType mesh_t; typedef SubdividerT< mesh_t, real_t > parent_t; public: CompositeT(void) : parent_t(), p_mesh_(NULL) {} explicit CompositeT(MeshType& _mesh) : parent_t(_mesh), p_mesh_(NULL) {}; virtual ~CompositeT() { } public: // inherited interface virtual const char *name( void ) const = 0; protected: // inherited interface bool prepare( MeshType& _m ); bool subdivide( MeshType& _m, size_t _n, const bool _update_points = true ) { assert( p_mesh_ == &_m ); while(_n--) { apply_rules(); commit(_m); } return true; } #ifdef NDEBUG bool cleanup( MeshType& ) #else bool cleanup( MeshType& _m ) #endif { assert( p_mesh_ == &_m ); p_mesh_=NULL; return true; } protected: /// Assemble here the rule sequence, by calling the constructor /// of the wanted rules. virtual void apply_rules(void) = 0; protected: /// Move vertices to new positions after the rules have been applied /// to the mesh (called by subdivide()). void commit( MeshType &_m) { typename MeshType::VertexIter v_it; for (v_it=_m.vertices_begin(); v_it != _m.vertices_end(); ++v_it) _m.set_point(*v_it, _m.data(*v_it).position()); } public: /// Abstract base class for coefficient functions struct Coeff { virtual ~Coeff() { } virtual double operator() (size_t _valence) = 0; }; protected: typedef typename MeshType::Scalar scalar_t; typedef typename MeshType::VertexHandle VertexHandle; typedef typename MeshType::FaceHandle FaceHandle; typedef typename MeshType::EdgeHandle EdgeHandle; typedef typename MeshType::HalfedgeHandle HalfedgeHandle; /// \name Uniform composite subdivision rules //@{ void Tvv3(); ///< Split Face, using Vertex information (1-3 split) void Tvv4(); ///< Split Face, using Vertex information (1-4 split) void Tfv(); ///< Split Face, using Face Information void FF(); ///< Face to face averaging. void FFc(Coeff& _coeff); ///< Weighted face to face averaging. void FFc(scalar_t _c); ///< Weighted face to face averaging. void FV(); ///< Face to vertex averaging. void FVc(Coeff& _coeff); ///< Weighted face to vertex Averaging with flaps void FVc(scalar_t _c); ///< Weighted face to vertex Averaging with flaps void FE(); ///< Face to edge averaging. void VF(); ///< Vertex to Face Averaging. void VFa(Coeff& _coeff); ///< Vertex to Face Averaging, weighted. void VFa(scalar_t _alpha); ///< Vertex to Face Averaging, weighted. void VV(); ///< Vertex to vertex averaging. void VVc(Coeff& _coeff); ///< Vertex to vertex averaging, weighted. void VVc(scalar_t _c); ///< Vertex to vertex averaging, weighted. void VE(); ///< VE Step (Vertex to Edge Averaging) void VdE(); ///< Vertex to edge averaging, using diamond of edges. void VdEc(scalar_t _c); ///< Weighted vertex to edge averaging, using diamond of edges /// Weigthed vertex to edge averaging, using diamond of edges for /// irregular vertices. void VdEg(Coeff& _coeff); /// Weigthed vertex to edge averaging, using diamond of edges for /// irregular vertices. void VdEg(scalar_t _gamma); void EF(); ///< Edge to face averaging. void EV(); ///< Edge to vertex averaging. void EVc(Coeff& _coeff); ///< Weighted edge to vertex averaging. void EVc(scalar_t _c); ///< Weighted edge to vertex averaging. void EdE(); ///< Edge to edge averaging w/ flap rule. void EdEc(scalar_t _c); ///< Weighted edge to edge averaging w/ flap rule. //@} void corner_cutting(HalfedgeHandle _heh); VertexHandle split_edge(HalfedgeHandle _heh); private: MeshType* p_mesh_; }; //============================================================================= } // END_NS_UNIFORM } // END_NS_SUBDIVIDER } // END_NS_OPENMESH //============================================================================= #if defined(OM_INCLUDE_TEMPLATES) && !defined(OPENMESH_SUBDIVIDER_UNIFORM_COMPOSITE_CC) #define OPENMESH_SUBDIVIDER_TEMPLATES #include "CompositeT.cc" #endif //============================================================================= #endif // COMPOSITET_HH defined //=============================================================================