Files
openmesh/src/OpenMesh/Core/Mesh/PolyConnectivity.cc
2017-06-27 11:56:15 +02:00

1234 lines
39 KiB
C++

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
//== IMPLEMENTATION ==========================================================
#include <OpenMesh/Core/Mesh/PolyConnectivity.hh>
#include <set>
namespace OpenMesh {
const PolyConnectivity::VertexHandle PolyConnectivity::InvalidVertexHandle;
const PolyConnectivity::HalfedgeHandle PolyConnectivity::InvalidHalfedgeHandle;
const PolyConnectivity::EdgeHandle PolyConnectivity::InvalidEdgeHandle;
const PolyConnectivity::FaceHandle PolyConnectivity::InvalidFaceHandle;
//-----------------------------------------------------------------------------
PolyConnectivity::HalfedgeHandle
PolyConnectivity::find_halfedge(VertexHandle _start_vh, VertexHandle _end_vh ) const
{
assert(_start_vh.is_valid() && _end_vh.is_valid());
for (ConstVertexOHalfedgeIter voh_it = cvoh_iter(_start_vh); voh_it.is_valid(); ++voh_it)
if (to_vertex_handle(*voh_it) == _end_vh)
return *voh_it;
return InvalidHalfedgeHandle;
}
bool PolyConnectivity::is_boundary(FaceHandle _fh, bool _check_vertex) const
{
for (ConstFaceEdgeIter cfeit = cfe_iter( _fh ); cfeit.is_valid(); ++cfeit)
if (is_boundary( *cfeit ) )
return true;
if (_check_vertex)
{
for (ConstFaceVertexIter cfvit = cfv_iter( _fh ); cfvit.is_valid(); ++cfvit)
if (is_boundary( *cfvit ) )
return true;
}
return false;
}
bool PolyConnectivity::is_manifold(VertexHandle _vh) const
{
/* The vertex is non-manifold if more than one gap exists, i.e.
more than one outgoing boundary halfedge. If (at least) one
boundary halfedge exists, the vertex' halfedge must be a
boundary halfedge. If iterating around the vertex finds another
boundary halfedge, the vertex is non-manifold. */
ConstVertexOHalfedgeIter vh_it(*this, _vh);
if (vh_it.is_valid())
for (++vh_it; vh_it.is_valid(); ++vh_it)
if (is_boundary(*vh_it))
return false;
return true;
}
//-----------------------------------------------------------------------------
void PolyConnectivity::adjust_outgoing_halfedge(VertexHandle _vh)
{
for (ConstVertexOHalfedgeIter vh_it=cvoh_iter(_vh); vh_it.is_valid(); ++vh_it)
{
if (is_boundary(*vh_it))
{
set_halfedge_handle(_vh, *vh_it);
break;
}
}
}
//-----------------------------------------------------------------------------
PolyConnectivity::FaceHandle
PolyConnectivity::add_face(const VertexHandle* _vertex_handles, size_t _vhs_size)
{
VertexHandle vh;
size_t i, ii, n(_vhs_size);
HalfedgeHandle inner_next, inner_prev,
outer_next, outer_prev,
boundary_next, boundary_prev,
patch_start, patch_end;
// Check sufficient working storage available
if (edgeData_.size() < n)
{
edgeData_.resize(n);
next_cache_.resize(6*n);
}
size_t next_cache_count = 0;
// don't allow degenerated faces
assert (n > 2);
// test for topological errors
for (i=0, ii=1; i<n; ++i, ++ii, ii%=n)
{
if ( !is_boundary(_vertex_handles[i]) )
{
omerr() << "PolyMeshT::add_face: complex vertex\n";
return InvalidFaceHandle;
}
// Initialise edge attributes
edgeData_[i].halfedge_handle = find_halfedge(_vertex_handles[i],
_vertex_handles[ii]);
edgeData_[i].is_new = !edgeData_[i].halfedge_handle.is_valid();
edgeData_[i].needs_adjust = false;
if (!edgeData_[i].is_new && !is_boundary(edgeData_[i].halfedge_handle))
{
omerr() << "PolyMeshT::add_face: complex edge\n";
return InvalidFaceHandle;
}
}
// re-link patches if necessary
for (i=0, ii=1; i<n; ++i, ++ii, ii%=n)
{
if (!edgeData_[i].is_new && !edgeData_[ii].is_new)
{
inner_prev = edgeData_[i].halfedge_handle;
inner_next = edgeData_[ii].halfedge_handle;
if (next_halfedge_handle(inner_prev) != inner_next)
{
// here comes the ugly part... we have to relink a whole patch
// search a free gap
// free gap will be between boundary_prev and boundary_next
outer_prev = opposite_halfedge_handle(inner_next);
outer_next = opposite_halfedge_handle(inner_prev);
boundary_prev = outer_prev;
do
boundary_prev =
opposite_halfedge_handle(next_halfedge_handle(boundary_prev));
while (!is_boundary(boundary_prev));
boundary_next = next_halfedge_handle(boundary_prev);
// ok ?
if (boundary_prev == inner_prev)
{
omerr() << "PolyMeshT::add_face: patch re-linking failed\n";
return InvalidFaceHandle;
}
assert(is_boundary(boundary_prev));
assert(is_boundary(boundary_next));
// other halfedges' handles
patch_start = next_halfedge_handle(inner_prev);
patch_end = prev_halfedge_handle(inner_next);
assert(boundary_prev.is_valid());
assert(patch_start.is_valid());
assert(patch_end.is_valid());
assert(boundary_next.is_valid());
assert(inner_prev.is_valid());
assert(inner_next.is_valid());
// relink
next_cache_[next_cache_count++] = std::make_pair(boundary_prev, patch_start);
next_cache_[next_cache_count++] = std::make_pair(patch_end, boundary_next);
next_cache_[next_cache_count++] = std::make_pair(inner_prev, inner_next);
}
}
}
// create missing edges
for (i=0, ii=1; i<n; ++i, ++ii, ii%=n)
if (edgeData_[i].is_new)
edgeData_[i].halfedge_handle = new_edge(_vertex_handles[i], _vertex_handles[ii]);
// create the face
FaceHandle fh(new_face());
set_halfedge_handle(fh, edgeData_[n-1].halfedge_handle);
// setup halfedges
for (i=0, ii=1; i<n; ++i, ++ii, ii%=n)
{
vh = _vertex_handles[ii];
inner_prev = edgeData_[i].halfedge_handle;
inner_next = edgeData_[ii].halfedge_handle;
assert(inner_prev.is_valid());
assert(inner_next.is_valid());
size_t id = 0;
if (edgeData_[i].is_new) id |= 1;
if (edgeData_[ii].is_new) id |= 2;
if (id)
{
outer_prev = opposite_halfedge_handle(inner_next);
outer_next = opposite_halfedge_handle(inner_prev);
assert(outer_prev.is_valid());
assert(outer_next.is_valid());
// set outer links
switch (id)
{
case 1: // prev is new, next is old
boundary_prev = prev_halfedge_handle(inner_next);
assert(boundary_prev.is_valid());
next_cache_[next_cache_count++] = std::make_pair(boundary_prev, outer_next);
set_halfedge_handle(vh, outer_next);
break;
case 2: // next is new, prev is old
boundary_next = next_halfedge_handle(inner_prev);
assert(boundary_next.is_valid());
next_cache_[next_cache_count++] = std::make_pair(outer_prev, boundary_next);
set_halfedge_handle(vh, boundary_next);
break;
case 3: // both are new
if (!halfedge_handle(vh).is_valid())
{
set_halfedge_handle(vh, outer_next);
next_cache_[next_cache_count++] = std::make_pair(outer_prev, outer_next);
}
else
{
boundary_next = halfedge_handle(vh);
boundary_prev = prev_halfedge_handle(boundary_next);
assert(boundary_prev.is_valid());
assert(boundary_next.is_valid());
next_cache_[next_cache_count++] = std::make_pair(boundary_prev, outer_next);
next_cache_[next_cache_count++] = std::make_pair(outer_prev, boundary_next);
}
break;
}
// set inner link
next_cache_[next_cache_count++] = std::make_pair(inner_prev, inner_next);
}
else edgeData_[ii].needs_adjust = (halfedge_handle(vh) == inner_next);
// set face handle
set_face_handle(edgeData_[i].halfedge_handle, fh);
}
// process next halfedge cache
for (i = 0; i < next_cache_count; ++i)
set_next_halfedge_handle(next_cache_[i].first, next_cache_[i].second);
// adjust vertices' halfedge handle
for (i=0; i<n; ++i)
if (edgeData_[i].needs_adjust)
adjust_outgoing_halfedge(_vertex_handles[i]);
return fh;
}
//-----------------------------------------------------------------------------
FaceHandle PolyConnectivity::add_face(VertexHandle _vh0, VertexHandle _vh1, VertexHandle _vh2, VertexHandle _vh3)
{
VertexHandle vhs[4] = { _vh0, _vh1, _vh2, _vh3 };
return add_face(vhs, 4);
}
//-----------------------------------------------------------------------------
FaceHandle PolyConnectivity::add_face(VertexHandle _vh0, VertexHandle _vh1, VertexHandle _vh2)
{
VertexHandle vhs[3] = { _vh0, _vh1, _vh2 };
return add_face(vhs, 3);
}
//-----------------------------------------------------------------------------
FaceHandle PolyConnectivity::add_face(const std::vector<VertexHandle>& _vhandles)
{ return add_face(&_vhandles.front(), _vhandles.size()); }
//-----------------------------------------------------------------------------
bool PolyConnectivity::is_collapse_ok(HalfedgeHandle v0v1)
{
//is edge already deleteed?
if (status(edge_handle(v0v1)).deleted())
{
return false;
}
HalfedgeHandle v1v0(opposite_halfedge_handle(v0v1));
VertexHandle v0(to_vertex_handle(v1v0));
VertexHandle v1(to_vertex_handle(v0v1));
bool v0v1_triangle = false;
bool v1v0_triangle = false;
if (!is_boundary(v0v1))
v0v1_triangle = valence(face_handle(v0v1)) == 3;
if (!is_boundary(v1v0))
v1v0_triangle = valence(face_handle(v1v0)) == 3;
//in a quadmesh we dont have the "next" or "previous" vhandle, so we need to look at previous and next on both sides
//VertexHandle v_01_p = from_vertex_handle(prev_halfedge_handle(v0v1));
VertexHandle v_01_n = to_vertex_handle(next_halfedge_handle(v0v1));
//VertexHandle v_10_p = from_vertex_handle(prev_halfedge_handle(v1v0));
VertexHandle v_10_n = to_vertex_handle(next_halfedge_handle(v1v0));
//are the vertices already deleted ?
if (status(v0).deleted() || status(v1).deleted())
{
return false;
}
//the edges v1-vl and vl-v0 must not be both boundary edges
//this test makes only sense in a polymesh if the side face is a triangle
if (!is_boundary(v0v1))
{
if (v0v1_triangle)
{
//VertexHandle vl = to_vertex_handle(next_halfedge_handle(v0v1));
HalfedgeHandle h1 = next_halfedge_handle(v0v1);
HalfedgeHandle h2 = next_halfedge_handle(h1);
if (is_boundary(opposite_halfedge_handle(h1)) && is_boundary(opposite_halfedge_handle(h2)))
return false;
}
}
//the edges v0-vr and vr-v1 must not be both boundary edges
//this test makes only sense in a polymesh if the side face is a triangle
if (!is_boundary(v1v0))
{
if (v1v0_triangle)
{
//VertexHandle vr = to_vertex_handle(next_halfedge_handle(v1v0));
HalfedgeHandle h1 = next_halfedge_handle(v1v0);
HalfedgeHandle h2 = next_halfedge_handle(h1);
if (is_boundary(opposite_halfedge_handle(h1)) && is_boundary(opposite_halfedge_handle(h2)))
return false;
}
}
// edge between two boundary vertices should be a boundary edge
if ( is_boundary(v0) && is_boundary(v1) && !is_boundary(v0v1) && !is_boundary(v1v0))
return false;
VertexVertexIter vv_it;
// test intersection of the one-rings of v0 and v1
for (vv_it = vv_iter(v0); vv_it.is_valid(); ++vv_it)
{
status(*vv_it).set_tagged(false);
}
for (vv_it = vv_iter(v1); vv_it.is_valid(); ++vv_it)
{
status(*vv_it).set_tagged(true);
}
for (vv_it = vv_iter(v0); vv_it.is_valid(); ++vv_it)
{
if (status(*vv_it).tagged() &&
!(*vv_it == v_01_n && v0v1_triangle) &&
!(*vv_it == v_10_n && v1v0_triangle)
)
{
return false;
}
}
//test for a face on the backside/other side that might degenerate
if (v0v1_triangle)
{
HalfedgeHandle one, two;
one = next_halfedge_handle(v0v1);
two = next_halfedge_handle(one);
one = opposite_halfedge_handle(one);
two = opposite_halfedge_handle(two);
if (face_handle(one) == face_handle(two) && valence(face_handle(one)) != 3)
{
return false;
}
}
if (v1v0_triangle)
{
HalfedgeHandle one, two;
one = next_halfedge_handle(v1v0);
two = next_halfedge_handle(one);
one = opposite_halfedge_handle(one);
two = opposite_halfedge_handle(two);
if (face_handle(one) == face_handle(two) && valence(face_handle(one)) != 3)
{
return false;
}
}
if (status(*vv_it).tagged() && v_01_n == v_10_n && v0v1_triangle && v1v0_triangle)
{
return false;
}
// passed all tests
return true;
}
//-----------------------------------------------------------------------------
void PolyConnectivity::delete_vertex(VertexHandle _vh, bool _delete_isolated_vertices)
{
// store incident faces
std::vector<FaceHandle> face_handles;
face_handles.reserve(8);
for (VFIter vf_it(vf_iter(_vh)); vf_it.is_valid(); ++vf_it)
face_handles.push_back(*vf_it);
// delete collected faces
std::vector<FaceHandle>::iterator fh_it(face_handles.begin()),
fh_end(face_handles.end());
for (; fh_it!=fh_end; ++fh_it)
delete_face(*fh_it, _delete_isolated_vertices);
status(_vh).set_deleted(true);
}
//-----------------------------------------------------------------------------
void PolyConnectivity::delete_edge(EdgeHandle _eh, bool _delete_isolated_vertices)
{
FaceHandle fh0(face_handle(halfedge_handle(_eh, 0)));
FaceHandle fh1(face_handle(halfedge_handle(_eh, 1)));
if (fh0.is_valid()) delete_face(fh0, _delete_isolated_vertices);
if (fh1.is_valid()) delete_face(fh1, _delete_isolated_vertices);
// If there is no face, we delete the edge
// here
if ( ! fh0.is_valid() && !fh1.is_valid()) {
// mark edge deleted if the mesh has a edge status
if ( has_edge_status() )
status(_eh).set_deleted(true);
// mark corresponding halfedges as deleted
// As the deleted edge is boundary,
// all corresponding halfedges will also be deleted.
if ( has_halfedge_status() ) {
status(halfedge_handle(_eh, 0)).set_deleted(true);
status(halfedge_handle(_eh, 1)).set_deleted(true);
}
}
}
//-----------------------------------------------------------------------------
void PolyConnectivity::delete_face(FaceHandle _fh, bool _delete_isolated_vertices)
{
assert(_fh.is_valid() && !status(_fh).deleted());
// mark face deleted
status(_fh).set_deleted(true);
// this vector will hold all boundary edges of face _fh
// these edges will be deleted
std::vector<EdgeHandle> deleted_edges;
deleted_edges.reserve(3);
// this vector will hold all vertices of face _fh
// for updating their outgoing halfedge
std::vector<VertexHandle> vhandles;
vhandles.reserve(3);
// for all halfedges of face _fh do:
// 1) invalidate face handle.
// 2) collect all boundary halfedges, set them deleted
// 3) store vertex handles
HalfedgeHandle hh;
for (FaceHalfedgeIter fh_it(fh_iter(_fh)); fh_it.is_valid(); ++fh_it)
{
hh = *fh_it;
set_boundary(hh);//set_face_handle(hh, InvalidFaceHandle);
if (is_boundary(opposite_halfedge_handle(hh)))
deleted_edges.push_back(edge_handle(hh));
vhandles.push_back(to_vertex_handle(hh));
}
// delete all collected (half)edges
// these edges were all boundary
// delete isolated vertices (if _delete_isolated_vertices is true)
if (!deleted_edges.empty())
{
std::vector<EdgeHandle>::iterator del_it(deleted_edges.begin()),
del_end(deleted_edges.end());
HalfedgeHandle h0, h1, next0, next1, prev0, prev1;
VertexHandle v0, v1;
for (; del_it!=del_end; ++del_it)
{
h0 = halfedge_handle(*del_it, 0);
v0 = to_vertex_handle(h0);
next0 = next_halfedge_handle(h0);
prev0 = prev_halfedge_handle(h0);
h1 = halfedge_handle(*del_it, 1);
v1 = to_vertex_handle(h1);
next1 = next_halfedge_handle(h1);
prev1 = prev_halfedge_handle(h1);
// adjust next and prev handles
set_next_halfedge_handle(prev0, next1);
set_next_halfedge_handle(prev1, next0);
// mark edge deleted if the mesh has a edge status
if ( has_edge_status() )
status(*del_it).set_deleted(true);
// mark corresponding halfedges as deleted
// As the deleted edge is boundary,
// all corresponding halfedges will also be deleted.
if ( has_halfedge_status() ) {
status(h0).set_deleted(true);
status(h1).set_deleted(true);
}
// update v0
if (halfedge_handle(v0) == h1)
{
// isolated ?
if (next0 == h1)
{
if (_delete_isolated_vertices)
status(v0).set_deleted(true);
set_isolated(v0);
}
else set_halfedge_handle(v0, next0);
}
// update v1
if (halfedge_handle(v1) == h0)
{
// isolated ?
if (next1 == h0)
{
if (_delete_isolated_vertices)
status(v1).set_deleted(true);
set_isolated(v1);
}
else set_halfedge_handle(v1, next1);
}
}
}
// update outgoing halfedge handles of remaining vertices
std::vector<VertexHandle>::iterator v_it(vhandles.begin()),
v_end(vhandles.end());
for (; v_it!=v_end; ++v_it)
adjust_outgoing_halfedge(*v_it);
}
//-----------------------------------------------------------------------------
PolyConnectivity::VertexIter PolyConnectivity::vertices_begin()
{
return VertexIter(*this, VertexHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstVertexIter PolyConnectivity::vertices_begin() const
{
return ConstVertexIter(*this, VertexHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::VertexIter PolyConnectivity::vertices_end()
{
return VertexIter(*this, VertexHandle( int(n_vertices() ) ));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstVertexIter PolyConnectivity::vertices_end() const
{
return ConstVertexIter(*this, VertexHandle( int(n_vertices()) ));
}
//-----------------------------------------------------------------------------
PolyConnectivity::HalfedgeIter PolyConnectivity::halfedges_begin()
{
return HalfedgeIter(*this, HalfedgeHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstHalfedgeIter PolyConnectivity::halfedges_begin() const
{
return ConstHalfedgeIter(*this, HalfedgeHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::HalfedgeIter PolyConnectivity::halfedges_end()
{
return HalfedgeIter(*this, HalfedgeHandle(int(n_halfedges())));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstHalfedgeIter PolyConnectivity::halfedges_end() const
{
return ConstHalfedgeIter(*this, HalfedgeHandle(int(n_halfedges())));
}
//-----------------------------------------------------------------------------
PolyConnectivity::EdgeIter PolyConnectivity::edges_begin()
{
return EdgeIter(*this, EdgeHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstEdgeIter PolyConnectivity::edges_begin() const
{
return ConstEdgeIter(*this, EdgeHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::EdgeIter PolyConnectivity::edges_end()
{
return EdgeIter(*this, EdgeHandle(int(n_edges())));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstEdgeIter PolyConnectivity::edges_end() const
{
return ConstEdgeIter(*this, EdgeHandle(int(n_edges())));
}
//-----------------------------------------------------------------------------
PolyConnectivity::FaceIter PolyConnectivity::faces_begin()
{
return FaceIter(*this, FaceHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstFaceIter PolyConnectivity::faces_begin() const
{
return ConstFaceIter(*this, FaceHandle(0));
}
//-----------------------------------------------------------------------------
PolyConnectivity::FaceIter PolyConnectivity::faces_end()
{
return FaceIter(*this, FaceHandle(int(n_faces())));
}
//-----------------------------------------------------------------------------
PolyConnectivity::ConstFaceIter PolyConnectivity::faces_end() const
{
return ConstFaceIter(*this, FaceHandle(int(n_faces())));
}
//-----------------------------------------------------------------------------
void PolyConnectivity::collapse(HalfedgeHandle _hh)
{
HalfedgeHandle h0 = _hh;
HalfedgeHandle h1 = next_halfedge_handle(h0);
HalfedgeHandle o0 = opposite_halfedge_handle(h0);
HalfedgeHandle o1 = next_halfedge_handle(o0);
// remove edge
collapse_edge(h0);
// remove loops
if (next_halfedge_handle(next_halfedge_handle(h1)) == h1)
collapse_loop(next_halfedge_handle(h1));
if (next_halfedge_handle(next_halfedge_handle(o1)) == o1)
collapse_loop(o1);
}
//-----------------------------------------------------------------------------
void PolyConnectivity::collapse_edge(HalfedgeHandle _hh)
{
HalfedgeHandle h = _hh;
HalfedgeHandle hn = next_halfedge_handle(h);
HalfedgeHandle hp = prev_halfedge_handle(h);
HalfedgeHandle o = opposite_halfedge_handle(h);
HalfedgeHandle on = next_halfedge_handle(o);
HalfedgeHandle op = prev_halfedge_handle(o);
FaceHandle fh = face_handle(h);
FaceHandle fo = face_handle(o);
VertexHandle vh = to_vertex_handle(h);
VertexHandle vo = to_vertex_handle(o);
// halfedge -> vertex
for (VertexIHalfedgeIter vih_it(vih_iter(vo)); vih_it.is_valid(); ++vih_it)
set_vertex_handle(*vih_it, vh);
// halfedge -> halfedge
set_next_halfedge_handle(hp, hn);
set_next_halfedge_handle(op, on);
// face -> halfedge
if (fh.is_valid()) set_halfedge_handle(fh, hn);
if (fo.is_valid()) set_halfedge_handle(fo, on);
// vertex -> halfedge
if (halfedge_handle(vh) == o) set_halfedge_handle(vh, hn);
adjust_outgoing_halfedge(vh);
set_isolated(vo);
// delete stuff
status(edge_handle(h)).set_deleted(true);
status(vo).set_deleted(true);
}
//-----------------------------------------------------------------------------
void PolyConnectivity::collapse_loop(HalfedgeHandle _hh)
{
HalfedgeHandle h0 = _hh;
HalfedgeHandle h1 = next_halfedge_handle(h0);
HalfedgeHandle o0 = opposite_halfedge_handle(h0);
HalfedgeHandle o1 = opposite_halfedge_handle(h1);
VertexHandle v0 = to_vertex_handle(h0);
VertexHandle v1 = to_vertex_handle(h1);
FaceHandle fh = face_handle(h0);
FaceHandle fo = face_handle(o0);
// is it a loop ?
assert ((next_halfedge_handle(h1) == h0) && (h1 != o0));
// halfedge -> halfedge
set_next_halfedge_handle(h1, next_halfedge_handle(o0));
set_next_halfedge_handle(prev_halfedge_handle(o0), h1);
// halfedge -> face
set_face_handle(h1, fo);
// vertex -> halfedge
set_halfedge_handle(v0, h1); adjust_outgoing_halfedge(v0);
set_halfedge_handle(v1, o1); adjust_outgoing_halfedge(v1);
// face -> halfedge
if (fo.is_valid() && halfedge_handle(fo) == o0)
{
set_halfedge_handle(fo, h1);
}
// delete stuff
if (fh.is_valid())
{
set_halfedge_handle(fh, InvalidHalfedgeHandle);
status(fh).set_deleted(true);
}
status(edge_handle(h0)).set_deleted(true);
}
//-----------------------------------------------------------------------------
bool PolyConnectivity::is_simple_link(EdgeHandle _eh) const
{
HalfedgeHandle heh0 = halfedge_handle(_eh, 0);
HalfedgeHandle heh1 = halfedge_handle(_eh, 1);
//FaceHandle fh0 = face_handle(heh0);//fh0 or fh1 might be a invalid,
FaceHandle fh1 = face_handle(heh1);//i.e., representing the boundary
HalfedgeHandle next_heh = next_halfedge_handle(heh0);
while (next_heh != heh0)
{//check if there are no other edges shared between fh0 & fh1
if (opposite_face_handle(next_heh) == fh1)
{
return false;
}
next_heh = next_halfedge_handle(next_heh);
}
return true;
}
//-----------------------------------------------------------------------------
bool PolyConnectivity::is_simply_connected(FaceHandle _fh) const
{
std::set<FaceHandle> nb_fhs;
for (ConstFaceFaceIter cff_it = cff_iter(_fh); cff_it.is_valid(); ++cff_it)
{
if (nb_fhs.find(*cff_it) == nb_fhs.end())
{
nb_fhs.insert(*cff_it);
}
else
{//there is more than one link
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
PolyConnectivity::FaceHandle
PolyConnectivity::remove_edge(EdgeHandle _eh)
{
//don't allow "dangling" vertices and edges
assert(!status(_eh).deleted() && is_simple_link(_eh));
HalfedgeHandle heh0 = halfedge_handle(_eh, 0);
HalfedgeHandle heh1 = halfedge_handle(_eh, 1);
//deal with the faces
FaceHandle rem_fh = face_handle(heh0), del_fh = face_handle(heh1);
if (!del_fh.is_valid())
{//boundary case - we must delete the rem_fh
std::swap(del_fh, rem_fh);
}
assert(del_fh.is_valid());
/* for (FaceHalfedgeIter fh_it = fh_iter(del_fh); fh_it; ++fh_it)
{//set the face handle of the halfedges of del_fh to point to rem_fh
set_face_handle(fh_it, rem_fh);
} */
//fix the halfedge relations
HalfedgeHandle prev_heh0 = prev_halfedge_handle(heh0);
HalfedgeHandle prev_heh1 = prev_halfedge_handle(heh1);
HalfedgeHandle next_heh0 = next_halfedge_handle(heh0);
HalfedgeHandle next_heh1 = next_halfedge_handle(heh1);
set_next_halfedge_handle(prev_heh0, next_heh1);
set_next_halfedge_handle(prev_heh1, next_heh0);
//correct outgoing vertex handles for the _eh vertices (if needed)
VertexHandle vh0 = to_vertex_handle(heh0);
VertexHandle vh1 = to_vertex_handle(heh1);
if (halfedge_handle(vh0) == heh1)
{
set_halfedge_handle(vh0, next_heh0);
}
if (halfedge_handle(vh1) == heh0)
{
set_halfedge_handle(vh1, next_heh1);
}
//correct the hafledge handle of rem_fh if needed and preserve its first vertex
if (halfedge_handle(rem_fh) == heh0)
{//rem_fh is the face at heh0
set_halfedge_handle(rem_fh, prev_heh1);
}
else if (halfedge_handle(rem_fh) == heh1)
{//rem_fh is the face at heh1
set_halfedge_handle(rem_fh, prev_heh0);
}
for (FaceHalfedgeIter fh_it = fh_iter(rem_fh); fh_it.is_valid(); ++fh_it)
{//set the face handle of the halfedges of del_fh to point to rem_fh
set_face_handle(*fh_it, rem_fh);
}
status(_eh).set_deleted(true);
status(del_fh).set_deleted(true);
return rem_fh;//returns the remaining face handle
}
//-----------------------------------------------------------------------------
void PolyConnectivity::reinsert_edge(EdgeHandle _eh)
{
//this does not work without prev_halfedge_handle
assert_compile(sizeof(Halfedge) == sizeof(Halfedge_with_prev));
//shoudl be deleted
assert(status(_eh).deleted());
status(_eh).set_deleted(false);
HalfedgeHandle heh0 = halfedge_handle(_eh, 0);
HalfedgeHandle heh1 = halfedge_handle(_eh, 1);
FaceHandle rem_fh = face_handle(heh0), del_fh = face_handle(heh1);
if (!del_fh.is_valid())
{//boundary case - we must delete the rem_fh
std::swap(del_fh, rem_fh);
}
assert(status(del_fh).deleted());
status(del_fh).set_deleted(false);
//restore halfedge relations
HalfedgeHandle prev_heh0 = prev_halfedge_handle(heh0);
HalfedgeHandle prev_heh1 = prev_halfedge_handle(heh1);
HalfedgeHandle next_heh0 = next_halfedge_handle(heh0);
HalfedgeHandle next_heh1 = next_halfedge_handle(heh1);
set_next_halfedge_handle(prev_heh0, heh0);
set_prev_halfedge_handle(next_heh0, heh0);
set_next_halfedge_handle(prev_heh1, heh1);
set_prev_halfedge_handle(next_heh1, heh1);
for (FaceHalfedgeIter fh_it = fh_iter(del_fh); fh_it.is_valid(); ++fh_it)
{//reassign halfedges to del_fh
set_face_handle(*fh_it, del_fh);
}
if (face_handle(halfedge_handle(rem_fh)) == del_fh)
{//correct the halfedge handle of rem_fh
if (halfedge_handle(rem_fh) == prev_heh0)
{//rem_fh is the face at heh1
set_halfedge_handle(rem_fh, heh1);
}
else
{//rem_fh is the face at heh0
assert(halfedge_handle(rem_fh) == prev_heh1);
set_halfedge_handle(rem_fh, heh0);
}
}
}
//-----------------------------------------------------------------------------
PolyConnectivity::HalfedgeHandle
PolyConnectivity::insert_edge(HalfedgeHandle _prev_heh, HalfedgeHandle _next_heh)
{
assert(face_handle(_prev_heh) == face_handle(_next_heh));//only the manifold case
assert(next_halfedge_handle(_prev_heh) != _next_heh);//this can not be done
VertexHandle vh0 = to_vertex_handle(_prev_heh);
VertexHandle vh1 = from_vertex_handle(_next_heh);
//create the link between vh0 and vh1
HalfedgeHandle heh0 = new_edge(vh0, vh1);
HalfedgeHandle heh1 = opposite_halfedge_handle(heh0);
HalfedgeHandle next_prev_heh = next_halfedge_handle(_prev_heh);
HalfedgeHandle prev_next_heh = prev_halfedge_handle(_next_heh);
set_next_halfedge_handle(_prev_heh, heh0);
set_next_halfedge_handle(heh0, _next_heh);
set_next_halfedge_handle(prev_next_heh, heh1);
set_next_halfedge_handle(heh1, next_prev_heh);
//now set the face handles - the new face is assigned to heh0
FaceHandle new_fh = new_face();
set_halfedge_handle(new_fh, heh0);
for (FaceHalfedgeIter fh_it = fh_iter(new_fh); fh_it.is_valid(); ++fh_it)
{
set_face_handle(*fh_it, new_fh);
}
FaceHandle old_fh = face_handle(next_prev_heh);
set_face_handle(heh1, old_fh);
if (old_fh.is_valid() && face_handle(halfedge_handle(old_fh)) == new_fh)
{//fh pointed to one of the halfedges now assigned to new_fh
set_halfedge_handle(old_fh, heh1);
}
adjust_outgoing_halfedge(vh0);
adjust_outgoing_halfedge(vh1);
return heh0;
}
//-----------------------------------------------------------------------------
void PolyConnectivity::triangulate(FaceHandle _fh)
{
/*
Split an arbitrary face into triangles by connecting
each vertex of fh after its second to vh.
- fh will remain valid (it will become one of the
triangles)
- the halfedge handles of the new triangles will
point to the old halfedges
*/
HalfedgeHandle base_heh(halfedge_handle(_fh));
VertexHandle start_vh = from_vertex_handle(base_heh);
HalfedgeHandle prev_heh(prev_halfedge_handle(base_heh));
HalfedgeHandle next_heh(next_halfedge_handle(base_heh));
while (to_vertex_handle(next_halfedge_handle(next_heh)) != start_vh)
{
HalfedgeHandle next_next_heh(next_halfedge_handle(next_heh));
FaceHandle new_fh = new_face();
set_halfedge_handle(new_fh, base_heh);
HalfedgeHandle new_heh = new_edge(to_vertex_handle(next_heh), start_vh);
set_next_halfedge_handle(base_heh, next_heh);
set_next_halfedge_handle(next_heh, new_heh);
set_next_halfedge_handle(new_heh, base_heh);
set_face_handle(base_heh, new_fh);
set_face_handle(next_heh, new_fh);
set_face_handle(new_heh, new_fh);
copy_all_properties(prev_heh, new_heh, true);
copy_all_properties(prev_heh, opposite_halfedge_handle(new_heh), true);
copy_all_properties(_fh, new_fh, true);
base_heh = opposite_halfedge_handle(new_heh);
next_heh = next_next_heh;
}
set_halfedge_handle(_fh, base_heh); //the last face takes the handle _fh
set_next_halfedge_handle(base_heh, next_heh);
set_next_halfedge_handle(next_halfedge_handle(next_heh), base_heh);
set_face_handle(base_heh, _fh);
}
//-----------------------------------------------------------------------------
void PolyConnectivity::triangulate()
{
/* The iterators will stay valid, even though new faces are added,
because they are now implemented index-based instead of
pointer-based.
*/
FaceIter f_it(faces_begin()), f_end(faces_end());
for (; f_it!=f_end; ++f_it)
triangulate(*f_it);
}
//-----------------------------------------------------------------------------
void PolyConnectivity::split(FaceHandle fh, VertexHandle vh)
{
HalfedgeHandle hend = halfedge_handle(fh);
HalfedgeHandle hh = next_halfedge_handle(hend);
HalfedgeHandle hold = new_edge(to_vertex_handle(hend), vh);
set_next_halfedge_handle(hend, hold);
set_face_handle(hold, fh);
hold = opposite_halfedge_handle(hold);
while (hh != hend) {
HalfedgeHandle hnext = next_halfedge_handle(hh);
FaceHandle fnew = new_face();
set_halfedge_handle(fnew, hh);
HalfedgeHandle hnew = new_edge(to_vertex_handle(hh), vh);
set_next_halfedge_handle(hnew, hold);
set_next_halfedge_handle(hold, hh);
set_next_halfedge_handle(hh, hnew);
set_face_handle(hnew, fnew);
set_face_handle(hold, fnew);
set_face_handle(hh, fnew);
hold = opposite_halfedge_handle(hnew);
hh = hnext;
}
set_next_halfedge_handle(hold, hend);
set_next_halfedge_handle(next_halfedge_handle(hend), hold);
set_face_handle(hold, fh);
set_halfedge_handle(vh, hold);
}
void PolyConnectivity::split_copy(FaceHandle fh, VertexHandle vh) {
// Split the given face (fh will still be valid)
split(fh, vh);
// Copy the property of the original face to all new faces
for(VertexFaceIter vf_it = vf_iter(vh); vf_it.is_valid(); ++vf_it)
copy_all_properties(fh, *vf_it, true);
}
//-----------------------------------------------------------------------------
uint PolyConnectivity::valence(VertexHandle _vh) const
{
uint count(0);
for (ConstVertexVertexIter vv_it=cvv_iter(_vh); vv_it.is_valid(); ++vv_it)
++count;
return count;
}
//-----------------------------------------------------------------------------
uint PolyConnectivity::valence(FaceHandle _fh) const
{
uint count(0);
for (ConstFaceVertexIter fv_it=cfv_iter(_fh); fv_it.is_valid(); ++fv_it)
++count;
return count;
}
//-----------------------------------------------------------------------------
void PolyConnectivity::split_edge(EdgeHandle _eh, VertexHandle _vh)
{
HalfedgeHandle h0 = halfedge_handle(_eh, 0);
HalfedgeHandle h1 = halfedge_handle(_eh, 1);
VertexHandle vfrom = from_vertex_handle(h0);
HalfedgeHandle ph0 = prev_halfedge_handle(h0);
//HalfedgeHandle ph1 = prev_halfedge_handle(h1);
//HalfedgeHandle nh0 = next_halfedge_handle(h0);
HalfedgeHandle nh1 = next_halfedge_handle(h1);
bool boundary0 = is_boundary(h0);
bool boundary1 = is_boundary(h1);
//add the new edge
HalfedgeHandle new_e = new_edge(from_vertex_handle(h0), _vh);
//fix the vertex of the opposite halfedge
set_vertex_handle(h1, _vh);
//fix the halfedge connectivity
set_next_halfedge_handle(new_e, h0);
set_next_halfedge_handle(h1, opposite_halfedge_handle(new_e));
set_next_halfedge_handle(ph0, new_e);
set_next_halfedge_handle(opposite_halfedge_handle(new_e), nh1);
// set_prev_halfedge_handle(new_e, ph0);
// set_prev_halfedge_handle(opposite_halfedge_handle(new_e), h1);
// set_prev_halfedge_handle(nh1, opposite_halfedge_handle(new_e));
// set_prev_halfedge_handle(h0, new_e);
if (!boundary0)
{
set_face_handle(new_e, face_handle(h0));
}
else
{
set_boundary(new_e);
}
if (!boundary1)
{
set_face_handle(opposite_halfedge_handle(new_e), face_handle(h1));
}
else
{
set_boundary(opposite_halfedge_handle(new_e));
}
set_halfedge_handle( _vh, h0 );
adjust_outgoing_halfedge( _vh );
if (halfedge_handle(vfrom) == h0)
{
set_halfedge_handle(vfrom, new_e);
adjust_outgoing_halfedge( vfrom );
}
}
//-----------------------------------------------------------------------------
void PolyConnectivity::split_edge_copy(EdgeHandle _eh, VertexHandle _vh)
{
// Split the edge (handle is kept!)
split_edge(_eh, _vh);
// Navigate to the new edge
EdgeHandle eh0 = edge_handle( next_halfedge_handle( halfedge_handle(_eh, 1) ) );
// Copy the property from the original to the new edge
copy_all_properties(_eh, eh0, true);
}
} // namespace OpenMesh