Files
openmesh/src/OpenMesh/Core/Mesh/BaseKernel.hh

835 lines
28 KiB
C++

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
//=============================================================================
//
// CLASS BaseKernel
//
//=============================================================================
#ifndef OPENMESH_BASE_KERNEL_HH
#define OPENMESH_BASE_KERNEL_HH
//== INCLUDES =================================================================
#include <OpenMesh/Core/System/config.h>
// --------------------
#include <vector>
#include <string>
#include <algorithm>
#include <iosfwd>
// --------------------
#include <OpenMesh/Core/Utils/PropertyContainer.hh>
//== NAMESPACES ===============================================================
namespace OpenMesh {
//== CLASS DEFINITION =========================================================
/// This class provides low-level property management like adding/removing
/// properties and access to properties. Under most circumstances, it is
/// advisable to use the high-level property management provided by
/// PropertyManager, instead.
///
/// All operations provided by %BaseKernel need at least a property handle
/// (VPropHandleT, EPropHandleT, HPropHandleT, FPropHandleT, MPropHandleT).
/// which keeps the data type of the property, too.
///
/// There are two types of properties:
/// -# Standard properties - mesh data (e.g. vertex normal or face color)
/// -# Custom properties - user defined data
///
/// The differentiation is only semantically, technically both are
/// equally handled. Therefore the methods provided by the %BaseKernel
/// are applicable to both property types.
///
/// \attention Since the class PolyMeshT derives from a kernel, hence all public
/// elements of %BaseKernel are usable.
class OPENMESHDLLEXPORT BaseKernel
{
public: //-------------------------------------------- constructor / destructor
BaseKernel() {}
virtual ~BaseKernel() {
vprops_.clear();
eprops_.clear();
hprops_.clear();
fprops_.clear();
}
public: //-------------------------------------------------- add new properties
/// \name Add a property to a mesh item
//@{
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper and/or one of its helper functions such as
* makePropertyManagerFromNew, makePropertyManagerFromExisting, or
* makePropertyManagerFromExistingOrNew.
*
* Adds a property
*
* Depending on the property handle type a vertex, (half-)edge, face or
* mesh property is added to the mesh. If the action fails the handle
* is invalid.
* On success the handle must be used to access the property data with
* property().
*
* \param _ph A property handle defining the data type to bind to mesh.
* On success the handle is valid else invalid.
* \param _name Optional name of property. Following restrictions apply
* to the name:
* -# Maximum length of name is 256 characters
* -# The prefixes matching "^[vhefm]:" are reserved for
* internal usage.
* -# The expression "^<.*>$" is reserved for internal usage.
*
*/
template <class T>
void add_property( VPropHandleT<T>& _ph, const std::string& _name="<vprop>")
{
_ph = VPropHandleT<T>( vprops_.add(T(), _name) );
vprops_.resize(n_vertices());
}
template <class T>
void add_property( HPropHandleT<T>& _ph, const std::string& _name="<hprop>")
{
_ph = HPropHandleT<T>( hprops_.add(T(), _name) );
hprops_.resize(n_halfedges());
}
template <class T>
void add_property( EPropHandleT<T>& _ph, const std::string& _name="<eprop>")
{
_ph = EPropHandleT<T>( eprops_.add(T(), _name) );
eprops_.resize(n_edges());
}
template <class T>
void add_property( FPropHandleT<T>& _ph, const std::string& _name="<fprop>")
{
_ph = FPropHandleT<T>( fprops_.add(T(), _name) );
fprops_.resize(n_faces());
}
template <class T>
void add_property( MPropHandleT<T>& _ph, const std::string& _name="<mprop>")
{
_ph = MPropHandleT<T>( mprops_.add(T(), _name) );
mprops_.resize(1);
}
//@}
public: //--------------------------------------------------- remove properties
/// \name Removing a property from a mesh tiem
//@{
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper to manage (and remove) properties.
*
* Remove a property.
*
* Removes the property represented by the handle from the apropriate
* mesh item.
* \param _ph Property to be removed. The handle is invalid afterwords.
*/
template <typename T>
void remove_property(VPropHandleT<T>& _ph)
{
if (_ph.is_valid())
vprops_.remove(_ph);
_ph.reset();
}
template <typename T>
void remove_property(HPropHandleT<T>& _ph)
{
if (_ph.is_valid())
hprops_.remove(_ph);
_ph.reset();
}
template <typename T>
void remove_property(EPropHandleT<T>& _ph)
{
if (_ph.is_valid())
eprops_.remove(_ph);
_ph.reset();
}
template <typename T>
void remove_property(FPropHandleT<T>& _ph)
{
if (_ph.is_valid())
fprops_.remove(_ph);
_ph.reset();
}
template <typename T>
void remove_property(MPropHandleT<T>& _ph)
{
if (_ph.is_valid())
mprops_.remove(_ph);
_ph.reset();
}
//@}
public: //------------------------------------------------ get handle from name
/// \name Get property handle by name
//@{
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper (e.g. PropertyManager::propertyExists) or one of
* its higher level helper functions such as
* makePropertyManagerFromExisting, or makePropertyManagerFromExistingOrNew.
*
* Retrieves the handle to a named property by it's name.
*
* \param _ph A property handle. On success the handle is valid else
* invalid.
* \param _name Name of wanted property.
* \return \c true if such a named property is available, else \c false.
*/
template <class T>
bool get_property_handle(VPropHandleT<T>& _ph,
const std::string& _name) const
{
return (_ph = VPropHandleT<T>(vprops_.handle(T(), _name))).is_valid();
}
template <class T>
bool get_property_handle(HPropHandleT<T>& _ph,
const std::string& _name) const
{
return (_ph = HPropHandleT<T>(hprops_.handle(T(), _name))).is_valid();
}
template <class T>
bool get_property_handle(EPropHandleT<T>& _ph,
const std::string& _name) const
{
return (_ph = EPropHandleT<T>(eprops_.handle(T(), _name))).is_valid();
}
template <class T>
bool get_property_handle(FPropHandleT<T>& _ph,
const std::string& _name) const
{
return (_ph = FPropHandleT<T>(fprops_.handle(T(), _name))).is_valid();
}
template <class T>
bool get_property_handle(MPropHandleT<T>& _ph,
const std::string& _name) const
{
return (_ph = MPropHandleT<T>(mprops_.handle(T(), _name))).is_valid();
}
//@}
public: //--------------------------------------------------- access properties
/// \name Access a property
//@{
/** In most cases you should use the convenient PropertyManager wrapper
* and use of this function should not be necessary. Under some
* circumstances, however (i.e. making a property persistent), it might be
* necessary to use this function.
*
* Access a property
*
* This method returns a reference to property. The property handle
* must be valid! The result is unpredictable if the handle is invalid!
*
* \param _ph A \em valid (!) property handle.
* \return The wanted property if the handle is valid.
*/
template <class T>
PropertyT<T>& property(VPropHandleT<T> _ph) {
return vprops_.property(_ph);
}
template <class T>
const PropertyT<T>& property(VPropHandleT<T> _ph) const {
return vprops_.property(_ph);
}
template <class T>
PropertyT<T>& property(HPropHandleT<T> _ph) {
return hprops_.property(_ph);
}
template <class T>
const PropertyT<T>& property(HPropHandleT<T> _ph) const {
return hprops_.property(_ph);
}
template <class T>
PropertyT<T>& property(EPropHandleT<T> _ph) {
return eprops_.property(_ph);
}
template <class T>
const PropertyT<T>& property(EPropHandleT<T> _ph) const {
return eprops_.property(_ph);
}
template <class T>
PropertyT<T>& property(FPropHandleT<T> _ph) {
return fprops_.property(_ph);
}
template <class T>
const PropertyT<T>& property(FPropHandleT<T> _ph) const {
return fprops_.property(_ph);
}
template <class T>
PropertyT<T>& mproperty(MPropHandleT<T> _ph) {
return mprops_.property(_ph);
}
template <class T>
const PropertyT<T>& mproperty(MPropHandleT<T> _ph) const {
return mprops_.property(_ph);
}
//@}
public: //-------------------------------------------- access property elements
/// \name Access a property element using a handle to a mesh item
//@{
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper.
*
* Return value of property for an item
*/
template <class T>
typename VPropHandleT<T>::reference
property(VPropHandleT<T> _ph, VertexHandle _vh) {
return vprops_.property(_ph)[_vh.idx()];
}
template <class T>
typename VPropHandleT<T>::const_reference
property(VPropHandleT<T> _ph, VertexHandle _vh) const {
return vprops_.property(_ph)[_vh.idx()];
}
template <class T>
typename HPropHandleT<T>::reference
property(HPropHandleT<T> _ph, HalfedgeHandle _hh) {
return hprops_.property(_ph)[_hh.idx()];
}
template <class T>
typename HPropHandleT<T>::const_reference
property(HPropHandleT<T> _ph, HalfedgeHandle _hh) const {
return hprops_.property(_ph)[_hh.idx()];
}
template <class T>
typename EPropHandleT<T>::reference
property(EPropHandleT<T> _ph, EdgeHandle _eh) {
return eprops_.property(_ph)[_eh.idx()];
}
template <class T>
typename EPropHandleT<T>::const_reference
property(EPropHandleT<T> _ph, EdgeHandle _eh) const {
return eprops_.property(_ph)[_eh.idx()];
}
template <class T>
typename FPropHandleT<T>::reference
property(FPropHandleT<T> _ph, FaceHandle _fh) {
return fprops_.property(_ph)[_fh.idx()];
}
template <class T>
typename FPropHandleT<T>::const_reference
property(FPropHandleT<T> _ph, FaceHandle _fh) const {
return fprops_.property(_ph)[_fh.idx()];
}
template <class T>
typename MPropHandleT<T>::reference
property(MPropHandleT<T> _ph) {
return mprops_.property(_ph)[0];
}
template <class T>
typename MPropHandleT<T>::const_reference
property(MPropHandleT<T> _ph) const {
return mprops_.property(_ph)[0];
}
//@}
public: //------------------------------------------------ copy property
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper (e.g. PropertyManager::copy_to or
* PropertyManager::copy).
*
* Copies a single property from one mesh element to another (of the same type)
*
* @param _ph A vertex property handle
* @param _vh_from From vertex handle
* @param _vh_to To vertex handle
*/
template <class T>
void copy_property(VPropHandleT<T>& _ph, VertexHandle _vh_from, VertexHandle _vh_to) {
if(_vh_from.is_valid() && _vh_to.is_valid())
vprops_.property(_ph)[_vh_to.idx()] = vprops_.property(_ph)[_vh_from.idx()];
}
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper (e.g. PropertyManager::copy_to or
* PropertyManager::copy).
*
* Copies a single property from one mesh element to another (of the same type)
*
* @param _ph A halfedge property handle
* @param _hh_from From halfedge handle
* @param _hh_to To halfedge handle
*/
template <class T>
void copy_property(HPropHandleT<T> _ph, HalfedgeHandle _hh_from, HalfedgeHandle _hh_to) {
if(_hh_from.is_valid() && _hh_to.is_valid())
hprops_.property(_ph)[_hh_to.idx()] = hprops_.property(_ph)[_hh_from.idx()];
}
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper (e.g. PropertyManager::copy_to or
* PropertyManager::copy).
*
* Copies a single property from one mesh element to another (of the same type)
*
* @param _ph An edge property handle
* @param _eh_from From edge handle
* @param _eh_to To edge handle
*/
template <class T>
void copy_property(EPropHandleT<T> _ph, EdgeHandle _eh_from, EdgeHandle _eh_to) {
if(_eh_from.is_valid() && _eh_to.is_valid())
eprops_.property(_ph)[_eh_to.idx()] = eprops_.property(_ph)[_eh_from.idx()];
}
/** You should not use this function directly. Instead, use the convenient
* PropertyManager wrapper (e.g. PropertyManager::copy_to or
* PropertyManager::copy).
*
* Copies a single property from one mesh element to another (of the same type)
*
* @param _ph A face property handle
* @param _fh_from From face handle
* @param _fh_to To face handle
*/
template <class T>
void copy_property(FPropHandleT<T> _ph, FaceHandle _fh_from, FaceHandle _fh_to) {
if(_fh_from.is_valid() && _fh_to.is_valid())
fprops_.property(_ph)[_fh_to.idx()] = fprops_.property(_ph)[_fh_from.idx()];
}
public:
//------------------------------------------------ copy all properties
/** Copies all properties from one mesh element to another (of the same type)
*
*
* @param _vh_from A vertex handle - source
* @param _vh_to A vertex handle - target
* @param _copyBuildIn Should the internal properties (position, normal, texture coordinate,..) be copied?
*/
void copy_all_properties(VertexHandle _vh_from, VertexHandle _vh_to, bool _copyBuildIn = false) {
for( PropertyContainer::iterator p_it = vprops_.begin();
p_it != vprops_.end(); ++p_it) {
// Copy all properties, if build in is true
// Otherwise, copy only properties without build in specifier
if ( *p_it && ( _copyBuildIn || (*p_it)->name().substr(0,2) != "v:" ) )
(*p_it)->copy(static_cast<size_t>(_vh_from.idx()), static_cast<size_t>(_vh_to.idx()));
}
}
/** Copies all properties from one mesh element to another (of the same type)
*
* @param _hh_from A halfedge handle - source
* @param _hh_to A halfedge handle - target
* @param _copyBuildIn Should the internal properties (position, normal, texture coordinate,..) be copied?
*/
void copy_all_properties(HalfedgeHandle _hh_from, HalfedgeHandle _hh_to, bool _copyBuildIn = false) {
for( PropertyContainer::iterator p_it = hprops_.begin();
p_it != hprops_.end(); ++p_it) {
// Copy all properties, if build in is true
// Otherwise, copy only properties without build in specifier
if ( *p_it && ( _copyBuildIn || (*p_it)->name().substr(0,2) != "h:") )
(*p_it)->copy(_hh_from.idx(), _hh_to.idx());
}
}
/** Copies all properties from one mesh element to another (of the same type)
*
* @param _eh_from An edge handle - source
* @param _eh_to An edge handle - target
* @param _copyBuildIn Should the internal properties (position, normal, texture coordinate,..) be copied?
*/
void copy_all_properties(EdgeHandle _eh_from, EdgeHandle _eh_to, bool _copyBuildIn = false) {
for( PropertyContainer::iterator p_it = eprops_.begin();
p_it != eprops_.end(); ++p_it) {
// Copy all properties, if build in is true
// Otherwise, copy only properties without build in specifier
if ( *p_it && ( _copyBuildIn || (*p_it)->name().substr(0,2) != "e:") )
(*p_it)->copy(_eh_from.idx(), _eh_to.idx());
}
}
/** Copies all properties from one mesh element to another (of the same type)
*
* @param _fh_from A face handle - source
* @param _fh_to A face handle - target
* @param _copyBuildIn Should the internal properties (position, normal, texture coordinate,..) be copied?
*
*/
void copy_all_properties(FaceHandle _fh_from, FaceHandle _fh_to, bool _copyBuildIn = false) {
for( PropertyContainer::iterator p_it = fprops_.begin();
p_it != fprops_.end(); ++p_it) {
// Copy all properties, if build in is true
// Otherwise, copy only properties without build in specifier
if ( *p_it && ( _copyBuildIn || (*p_it)->name().substr(0,2) != "f:") )
(*p_it)->copy(_fh_from.idx(), _fh_to.idx());
}
}
/**
* @brief copy_all_kernel_properties uses the = operator to copy all properties from a given other BaseKernel.
* @param _other Another BaseKernel, to copy the properties from.
*/
void copy_all_kernel_properties(const BaseKernel & _other)
{
this->vprops_ = _other.vprops_;
this->eprops_ = _other.eprops_;
this->hprops_ = _other.hprops_;
this->fprops_ = _other.fprops_;
}
protected: //------------------------------------------------- low-level access
public: // used by non-native kernel and MeshIO, should be protected
size_t n_vprops(void) const { return vprops_.size(); }
size_t n_eprops(void) const { return eprops_.size(); }
size_t n_hprops(void) const { return hprops_.size(); }
size_t n_fprops(void) const { return fprops_.size(); }
size_t n_mprops(void) const { return mprops_.size(); }
BaseProperty* _get_vprop( const std::string& _name)
{ return vprops_.property(_name); }
BaseProperty* _get_eprop( const std::string& _name)
{ return eprops_.property(_name); }
BaseProperty* _get_hprop( const std::string& _name)
{ return hprops_.property(_name); }
BaseProperty* _get_fprop( const std::string& _name)
{ return fprops_.property(_name); }
BaseProperty* _get_mprop( const std::string& _name)
{ return mprops_.property(_name); }
const BaseProperty* _get_vprop( const std::string& _name) const
{ return vprops_.property(_name); }
const BaseProperty* _get_eprop( const std::string& _name) const
{ return eprops_.property(_name); }
const BaseProperty* _get_hprop( const std::string& _name) const
{ return hprops_.property(_name); }
const BaseProperty* _get_fprop( const std::string& _name) const
{ return fprops_.property(_name); }
const BaseProperty* _get_mprop( const std::string& _name) const
{ return mprops_.property(_name); }
BaseProperty& _vprop( size_t _idx ) { return vprops_._property( _idx ); }
BaseProperty& _eprop( size_t _idx ) { return eprops_._property( _idx ); }
BaseProperty& _hprop( size_t _idx ) { return hprops_._property( _idx ); }
BaseProperty& _fprop( size_t _idx ) { return fprops_._property( _idx ); }
BaseProperty& _mprop( size_t _idx ) { return mprops_._property( _idx ); }
const BaseProperty& _vprop( size_t _idx ) const
{ return vprops_._property( _idx ); }
const BaseProperty& _eprop( size_t _idx ) const
{ return eprops_._property( _idx ); }
const BaseProperty& _hprop( size_t _idx ) const
{ return hprops_._property( _idx ); }
const BaseProperty& _fprop( size_t _idx ) const
{ return fprops_._property( _idx ); }
const BaseProperty& _mprop( size_t _idx ) const
{ return mprops_._property( _idx ); }
size_t _add_vprop( BaseProperty* _bp ) { return vprops_._add( _bp ); }
size_t _add_eprop( BaseProperty* _bp ) { return eprops_._add( _bp ); }
size_t _add_hprop( BaseProperty* _bp ) { return hprops_._add( _bp ); }
size_t _add_fprop( BaseProperty* _bp ) { return fprops_._add( _bp ); }
size_t _add_mprop( BaseProperty* _bp ) { return mprops_._add( _bp ); }
protected: // low-level access non-public
BaseProperty& _vprop( BaseHandle _h )
{ return vprops_._property( _h.idx() ); }
BaseProperty& _eprop( BaseHandle _h )
{ return eprops_._property( _h.idx() ); }
BaseProperty& _hprop( BaseHandle _h )
{ return hprops_._property( _h.idx() ); }
BaseProperty& _fprop( BaseHandle _h )
{ return fprops_._property( _h.idx() ); }
BaseProperty& _mprop( BaseHandle _h )
{ return mprops_._property( _h.idx() ); }
const BaseProperty& _vprop( BaseHandle _h ) const
{ return vprops_._property( _h.idx() ); }
const BaseProperty& _eprop( BaseHandle _h ) const
{ return eprops_._property( _h.idx() ); }
const BaseProperty& _hprop( BaseHandle _h ) const
{ return hprops_._property( _h.idx() ); }
const BaseProperty& _fprop( BaseHandle _h ) const
{ return fprops_._property( _h.idx() ); }
const BaseProperty& _mprop( BaseHandle _h ) const
{ return mprops_._property( _h.idx() ); }
public: //----------------------------------------------------- element numbers
virtual size_t n_vertices() const { return 0; }
virtual size_t n_halfedges() const { return 0; }
virtual size_t n_edges() const { return 0; }
virtual size_t n_faces() const { return 0; }
template <typename HandleT>
size_t n_elements() const;
protected: //------------------------------------------- synchronize properties
/// Reserves space for \p _n elements in all vertex property vectors.
void vprops_reserve(size_t _n) const { vprops_.reserve(_n); }
/// Resizes all vertex property vectors to the specified size.
void vprops_resize(size_t _n) const { vprops_.resize(_n); }
/**
* Same as vprops_resize() but ignores vertex property vectors that have
* a size larger than \p _n.
*
* Use this method instead of vprops_resize() if you plan to frequently reduce
* and enlarge the property container and you don't want to waste time
* reallocating the property vectors every time.
*/
void vprops_resize_if_smaller(size_t _n) const { vprops_.resize_if_smaller(_n); }
void vprops_clear() {
vprops_.clear();
}
void vprops_swap(unsigned int _i0, unsigned int _i1) const {
vprops_.swap(_i0, _i1);
}
void hprops_reserve(size_t _n) const { hprops_.reserve(_n); }
void hprops_resize(size_t _n) const { hprops_.resize(_n); }
void hprops_clear() {
hprops_.clear();
}
void hprops_swap(unsigned int _i0, unsigned int _i1) const {
hprops_.swap(_i0, _i1);
}
void eprops_reserve(size_t _n) const { eprops_.reserve(_n); }
void eprops_resize(size_t _n) const { eprops_.resize(_n); }
void eprops_clear() {
eprops_.clear();
}
void eprops_swap(unsigned int _i0, unsigned int _i1) const {
eprops_.swap(_i0, _i1);
}
void fprops_reserve(size_t _n) const { fprops_.reserve(_n); }
void fprops_resize(size_t _n) const { fprops_.resize(_n); }
void fprops_clear() {
fprops_.clear();
}
void fprops_swap(unsigned int _i0, unsigned int _i1) const {
fprops_.swap(_i0, _i1);
}
void mprops_resize(size_t _n) const { mprops_.resize(_n); }
void mprops_clear() {
mprops_.clear();
}
public:
// uses std::clog as output stream
void property_stats() const;
void property_stats(std::ostream& _ostr) const;
void vprop_stats( std::string& _string ) const;
void hprop_stats( std::string& _string ) const;
void eprop_stats( std::string& _string ) const;
void fprop_stats( std::string& _string ) const;
void mprop_stats( std::string& _string ) const;
// uses std::clog as output stream
void vprop_stats() const;
void hprop_stats() const;
void eprop_stats() const;
void fprop_stats() const;
void mprop_stats() const;
void vprop_stats(std::ostream& _ostr) const;
void hprop_stats(std::ostream& _ostr) const;
void eprop_stats(std::ostream& _ostr) const;
void fprop_stats(std::ostream& _ostr) const;
void mprop_stats(std::ostream& _ostr) const;
public:
typedef PropertyContainer::iterator prop_iterator;
typedef PropertyContainer::const_iterator const_prop_iterator;
prop_iterator vprops_begin() { return vprops_.begin(); }
prop_iterator vprops_end() { return vprops_.end(); }
const_prop_iterator vprops_begin() const { return vprops_.begin(); }
const_prop_iterator vprops_end() const { return vprops_.end(); }
prop_iterator eprops_begin() { return eprops_.begin(); }
prop_iterator eprops_end() { return eprops_.end(); }
const_prop_iterator eprops_begin() const { return eprops_.begin(); }
const_prop_iterator eprops_end() const { return eprops_.end(); }
prop_iterator hprops_begin() { return hprops_.begin(); }
prop_iterator hprops_end() { return hprops_.end(); }
const_prop_iterator hprops_begin() const { return hprops_.begin(); }
const_prop_iterator hprops_end() const { return hprops_.end(); }
prop_iterator fprops_begin() { return fprops_.begin(); }
prop_iterator fprops_end() { return fprops_.end(); }
const_prop_iterator fprops_begin() const { return fprops_.begin(); }
const_prop_iterator fprops_end() const { return fprops_.end(); }
prop_iterator mprops_begin() { return mprops_.begin(); }
prop_iterator mprops_end() { return mprops_.end(); }
const_prop_iterator mprops_begin() const { return mprops_.begin(); }
const_prop_iterator mprops_end() const { return mprops_.end(); }
private:
PropertyContainer vprops_;
PropertyContainer hprops_;
PropertyContainer eprops_;
PropertyContainer fprops_;
PropertyContainer mprops_;
};
template <>
inline size_t BaseKernel::n_elements<VertexHandle>() const { return n_vertices(); }
template <>
inline size_t BaseKernel::n_elements<HalfedgeHandle>() const { return n_halfedges(); }
template <>
inline size_t BaseKernel::n_elements<EdgeHandle>() const { return n_edges(); }
template <>
inline size_t BaseKernel::n_elements<FaceHandle>() const { return n_faces(); }
//=============================================================================
} // namespace OpenMesh
//=============================================================================
#endif // OPENMESH_BASE_KERNEL_HH defined
//=============================================================================