388 lines
12 KiB
C++
388 lines
12 KiB
C++
/* ========================================================================= *
|
|
* *
|
|
* OpenMesh *
|
|
* Copyright (c) 2001-2015, RWTH-Aachen University *
|
|
* Department of Computer Graphics and Multimedia *
|
|
* All rights reserved. *
|
|
* www.openmesh.org *
|
|
* *
|
|
*---------------------------------------------------------------------------*
|
|
* This file is part of OpenMesh. *
|
|
*---------------------------------------------------------------------------*
|
|
* *
|
|
* Redistribution and use in source and binary forms, with or without *
|
|
* modification, are permitted provided that the following conditions *
|
|
* are met: *
|
|
* *
|
|
* 1. Redistributions of source code must retain the above copyright notice, *
|
|
* this list of conditions and the following disclaimer. *
|
|
* *
|
|
* 2. Redistributions in binary form must reproduce the above copyright *
|
|
* notice, this list of conditions and the following disclaimer in the *
|
|
* documentation and/or other materials provided with the distribution. *
|
|
* *
|
|
* 3. Neither the name of the copyright holder nor the names of its *
|
|
* contributors may be used to endorse or promote products derived from *
|
|
* this software without specific prior written permission. *
|
|
* *
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
|
|
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
|
|
* *
|
|
* ========================================================================= */
|
|
|
|
|
|
/** \file ModHausdorffT.cc
|
|
*/
|
|
|
|
|
|
//=============================================================================
|
|
//
|
|
// CLASS ModHausdorffT - IMPLEMENTATION
|
|
//
|
|
//=============================================================================
|
|
|
|
#define OPENMESH_DECIMATER_MODHAUSDORFFT_C
|
|
|
|
|
|
//== INCLUDES =================================================================
|
|
|
|
#include "ModHausdorffT.hh"
|
|
|
|
|
|
//== NAMESPACES ===============================================================
|
|
|
|
namespace OpenMesh {
|
|
namespace Decimater {
|
|
|
|
//== IMPLEMENTATION ==========================================================
|
|
|
|
template <class MeshT>
|
|
typename ModHausdorffT<MeshT>::Scalar
|
|
ModHausdorffT<MeshT>::
|
|
distPointTriangleSquared( const Point& _p,
|
|
const Point& _v0,
|
|
const Point& _v1,
|
|
const Point& _v2 )
|
|
{
|
|
const Point v0v1 = _v1 - _v0;
|
|
const Point v0v2 = _v2 - _v0;
|
|
const Point n = v0v1 % v0v2; // not normalized !
|
|
const Scalar d = n.sqrnorm();
|
|
|
|
|
|
// Check if the triangle is degenerated
|
|
if (d < FLT_MIN && d > -FLT_MIN) {
|
|
return -1.0;
|
|
}
|
|
const Scalar invD = static_cast<Scalar>(1.0) / d;
|
|
|
|
// these are not needed for every point, should still perform
|
|
// better with many points against one triangle
|
|
const Point v1v2 = _v2 - _v1;
|
|
const Scalar inv_v0v2_2 = static_cast<Scalar>(1.0) / v0v2.sqrnorm();
|
|
const Scalar inv_v0v1_2 = static_cast<Scalar>(1.0) / v0v1.sqrnorm();
|
|
const Scalar inv_v1v2_2 = static_cast<Scalar>(1.0) / v1v2.sqrnorm();
|
|
|
|
|
|
Point v0p = _p - _v0;
|
|
Point t = v0p % n;
|
|
typename Point::value_type s01, s02, s12;
|
|
const Scalar a = (t | v0v2) * -invD;
|
|
const Scalar b = (t | v0v1) * invD;
|
|
|
|
if (a < 0)
|
|
{
|
|
// Calculate the distance to an edge or a corner vertex
|
|
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
|
|
if (s02 < 0.0)
|
|
{
|
|
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
|
|
if (s01 <= 0.0) {
|
|
v0p = _v0;
|
|
} else if (s01 >= 1.0) {
|
|
v0p = _v1;
|
|
} else {
|
|
v0p = _v0 + v0v1 * s01;
|
|
}
|
|
} else if (s02 > 1.0) {
|
|
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
|
|
if (s12 >= 1.0) {
|
|
v0p = _v2;
|
|
} else if (s12 <= 0.0) {
|
|
v0p = _v1;
|
|
} else {
|
|
v0p = _v1 + v1v2 * s12;
|
|
}
|
|
} else {
|
|
v0p = _v0 + v0v2 * s02;
|
|
}
|
|
} else if (b < 0.0) {
|
|
// Calculate the distance to an edge or a corner vertex
|
|
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
|
|
if (s01 < 0.0)
|
|
{
|
|
// const Point n = v0v1 % v0v2; // not normalized !
|
|
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
|
|
if (s02 <= 0.0) {
|
|
v0p = _v0;
|
|
} else if (s02 >= 1.0) {
|
|
v0p = _v2;
|
|
} else {
|
|
v0p = _v0 + v0v2 * s02;
|
|
}
|
|
} else if (s01 > 1.0) {
|
|
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
|
|
if (s12 >= 1.0) {
|
|
v0p = _v2;
|
|
} else if (s12 <= 0.0) {
|
|
v0p = _v1;
|
|
} else {
|
|
v0p = _v1 + v1v2 * s12;
|
|
}
|
|
} else {
|
|
v0p = _v0 + v0v1 * s01;
|
|
}
|
|
} else if (a+b > 1.0) {
|
|
// Calculate the distance to an edge or a corner vertex
|
|
s12 = ( v1v2 | ( _p - _v1 )) * inv_v1v2_2;
|
|
if (s12 >= 1.0) {
|
|
s02 = ( v0v2 | v0p ) * inv_v0v2_2;
|
|
if (s02 <= 0.0) {
|
|
v0p = _v0;
|
|
} else if (s02 >= 1.0) {
|
|
v0p = _v2;
|
|
} else {
|
|
v0p = _v0 + v0v2*s02;
|
|
}
|
|
} else if (s12 <= 0.0) {
|
|
s01 = ( v0v1 | v0p ) * inv_v0v1_2;
|
|
if (s01 <= 0.0) {
|
|
v0p = _v0;
|
|
} else if (s01 >= 1.0) {
|
|
v0p = _v1;
|
|
} else {
|
|
v0p = _v0 + v0v1 * s01;
|
|
}
|
|
} else {
|
|
v0p = _v1 + v1v2 * s12;
|
|
}
|
|
} else {
|
|
// Calculate the distance to an interior point of the triangle
|
|
return ( (_p - n*((n|v0p) * invD)) - _p).sqrnorm();
|
|
}
|
|
|
|
return (v0p - _p).sqrnorm();
|
|
}
|
|
|
|
|
|
template <class MeshT>
|
|
void
|
|
ModHausdorffT<MeshT>::
|
|
initialize()
|
|
{
|
|
typename Mesh::FIter f_it(mesh_.faces_begin()), f_end(mesh_.faces_end());
|
|
|
|
for (; f_it!=f_end; ++f_it)
|
|
mesh_.property(points_, *f_it).clear();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
template <class MeshT>
|
|
float
|
|
ModHausdorffT<MeshT>::
|
|
collapse_priority(const CollapseInfo& _ci)
|
|
{
|
|
std::vector<FaceHandle> faces; faces.reserve(20);
|
|
typename Mesh::VertexFaceIter vf_it;
|
|
typename Mesh::FaceHandle fh;
|
|
const typename Mesh::Scalar sqr_tolerace = tolerance_*tolerance_;
|
|
typename Mesh::CFVIter fv_it;
|
|
bool ok;
|
|
|
|
// Clear the temporary point storage
|
|
tmp_points_.clear();
|
|
|
|
// collect all points to be tested
|
|
// collect all faces to be tested against
|
|
for (vf_it=mesh_.vf_iter(_ci.v0); vf_it.is_valid(); ++vf_it) {
|
|
fh = *vf_it;
|
|
|
|
if (fh != _ci.fl && fh != _ci.fr)
|
|
faces.push_back(fh);
|
|
|
|
Points& pts = mesh_.property(points_, fh);
|
|
std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_));
|
|
}
|
|
|
|
// add point to be removed
|
|
tmp_points_.push_back(_ci.p0);
|
|
|
|
// setup iterators
|
|
typename std::vector<FaceHandle>::iterator fh_it, fh_end(faces.end());
|
|
typename Points::const_iterator p_it, p_end(tmp_points_.end());
|
|
|
|
// simulate collapse
|
|
mesh_.set_point(_ci.v0, _ci.p1);
|
|
|
|
// for each point: try to find a face such that error is < tolerance
|
|
ok = true;
|
|
|
|
for (p_it=tmp_points_.begin(); ok && p_it!=p_end; ++p_it) {
|
|
ok = false;
|
|
|
|
for (fh_it=faces.begin(); !ok && fh_it!=fh_end; ++fh_it) {
|
|
fv_it=mesh_.cfv_iter(*fh_it);
|
|
const Point& p0 = mesh_.point(*fv_it);
|
|
const Point& p1 = mesh_.point(*(++fv_it));
|
|
const Point& p2 = mesh_.point(*(++fv_it));
|
|
|
|
if ( distPointTriangleSquared(*p_it, p0, p1, p2) <= sqr_tolerace)
|
|
ok = true;
|
|
}
|
|
}
|
|
|
|
// undo simulation changes
|
|
mesh_.set_point(_ci.v0, _ci.p0);
|
|
|
|
return ( ok ? Base::LEGAL_COLLAPSE : Base::ILLEGAL_COLLAPSE );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template<class MeshT>
|
|
void ModHausdorffT<MeshT>::set_error_tolerance_factor(double _factor) {
|
|
if (_factor >= 0.0 && _factor <= 1.0) {
|
|
// the smaller the factor, the smaller tolerance gets
|
|
// thus creating a stricter constraint
|
|
// division by error_tolerance_factor_ is for normalization
|
|
Scalar tolerance = tolerance_ * Scalar(_factor / this->error_tolerance_factor_);
|
|
set_tolerance(tolerance);
|
|
this->error_tolerance_factor_ = _factor;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class MeshT>
|
|
void
|
|
ModHausdorffT<MeshT>::
|
|
postprocess_collapse(const CollapseInfo& _ci)
|
|
{
|
|
typename Mesh::VertexFaceIter vf_it;
|
|
FaceHandle fh;
|
|
std::vector<FaceHandle> faces;
|
|
|
|
|
|
// collect points & neighboring triangles
|
|
|
|
tmp_points_.clear();
|
|
faces.reserve(20);
|
|
|
|
// collect active faces and their points
|
|
for (vf_it=mesh_.vf_iter(_ci.v1); vf_it.is_valid(); ++vf_it) {
|
|
fh = *vf_it;
|
|
faces.push_back(fh);
|
|
|
|
Points& pts = mesh_.property(points_, fh);
|
|
std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_));
|
|
pts.clear();
|
|
}
|
|
if (faces.empty()) return; // should not happen anyway...
|
|
|
|
|
|
// collect points of the 2 deleted faces
|
|
if ((fh=_ci.fl).is_valid()) {
|
|
Points& pts = mesh_.property(points_, fh);
|
|
std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_));
|
|
pts.clear();
|
|
}
|
|
if ((fh=_ci.fr).is_valid()) {
|
|
Points& pts = mesh_.property(points_, fh);
|
|
std::copy(pts.begin(), pts.end(), std::back_inserter(tmp_points_));
|
|
pts.clear();
|
|
}
|
|
|
|
// add the deleted point
|
|
tmp_points_.push_back(_ci.p0);
|
|
|
|
|
|
// setup iterators
|
|
typename std::vector<FaceHandle>::iterator fh_it, fh_end(faces.end());
|
|
typename Points::const_iterator p_it, p_end(tmp_points_.end());
|
|
|
|
// re-distribute points
|
|
Scalar emin, e;
|
|
typename Mesh::CFVIter fv_it;
|
|
|
|
for (p_it=tmp_points_.begin(); p_it!=p_end; ++p_it) {
|
|
emin = FLT_MAX;
|
|
|
|
for (fh_it=faces.begin(); fh_it!=fh_end; ++fh_it) {
|
|
fv_it=mesh_.cfv_iter(*fh_it);
|
|
const Point& p0 = mesh_.point(*fv_it);
|
|
const Point& p1 = mesh_.point(*(++fv_it));
|
|
const Point& p2 = mesh_.point(*(++fv_it));
|
|
|
|
e = distPointTriangleSquared(*p_it, p0, p1, p2);
|
|
if (e < emin) {
|
|
emin = e;
|
|
fh = *fh_it;
|
|
}
|
|
|
|
}
|
|
|
|
mesh_.property(points_, fh).push_back(*p_it);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
template <class MeshT>
|
|
typename ModHausdorffT<MeshT>::Scalar
|
|
ModHausdorffT<MeshT>::
|
|
compute_sqr_error(FaceHandle _fh, const Point& _p) const
|
|
{
|
|
typename Mesh::CFVIter fv_it = mesh_.cfv_iter(_fh);
|
|
const Point& p0 = mesh_.point(fv_it);
|
|
const Point& p1 = mesh_.point(++fv_it);
|
|
const Point& p2 = mesh_.point(++fv_it);
|
|
|
|
const Points& points = mesh_.property(points_, _fh);
|
|
typename Points::const_iterator p_it = points.begin();
|
|
typename Points::const_iterator p_end = points.end();
|
|
|
|
Point dummy;
|
|
Scalar e;
|
|
Scalar emax = distPointTriangleSquared(_p, p0, p1, p2);
|
|
|
|
|
|
|
|
for (; p_it!=p_end; ++p_it) {
|
|
e = distPointTriangleSquared(*p_it, p0, p1, p2);
|
|
if (e > emax)
|
|
emax = e;
|
|
}
|
|
|
|
return emax;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
}
|
|
}
|
|
//=============================================================================
|