Files
openmesh/src/OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT_impl.hh
2019-02-20 11:49:15 +01:00

318 lines
10 KiB
C++

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/** \file Adaptive/Composite/CompositeT.cc
*/
//=============================================================================
//
// CLASS CompositeT - IMPLEMENTATION
//
//=============================================================================
#define OPENMESH_SUBDIVIDER_ADAPTIVE_COMPOSITET_CC
//== INCLUDES =================================================================
#include <OpenMesh/Core/System/config.hh>
#include <OpenMesh/Core/System/omstream.hh>
#include <ostream>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.hh>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RuleInterfaceT.hh>
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Subdivider { // BEGIN_NS_DECIMATER
namespace Adaptive { // BEGIN_NS_ADAPTIVE
//== IMPLEMENTATION ==========================================================
template<class M>
bool
CompositeT<M> ::
initialize( void )
{
typename Mesh::VertexIter v_it;
typename Mesh::FaceIter f_it;
typename Mesh::EdgeIter e_it;
const typename Mesh::Point zero_point(0.0, 0.0, 0.0);
// ---------------------------------------- Init Vertices
for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
{
mesh_.data(*v_it).set_state(0);
mesh_.data(*v_it).set_final();
mesh_.data(*v_it).set_position(0, mesh_.point(*v_it));
}
// ---------------------------------------- Init Faces
for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it)
{
mesh_.data(*f_it).set_state(0);
mesh_.data(*f_it).set_final();
mesh_.data(*f_it).set_position(0, zero_point);
}
// ---------------------------------------- Init Edges
for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it)
{
mesh_.data(*e_it).set_state(0);
mesh_.data(*e_it).set_final();
mesh_.data(*e_it).set_position(0, zero_point);
}
// ---------------------------------------- Init Rules
int n_subdiv_rules_ = 0;
// look for subdivision rule(s)
for (size_t i=0; i < n_rules(); ++i) {
if (rule_sequence_[i]->type()[0] == 'T' ||
rule_sequence_[i]->type()[0] == 't')
{
++n_subdiv_rules_;
subdiv_rule_ = rule_sequence_[i];
subdiv_type_ = rule_sequence_[i]->subdiv_type();
}
}
// check for correct number of subdivision rules
assert(n_subdiv_rules_ == 1);
if (n_subdiv_rules_ != 1)
{
::omerr() << "Error! More than one subdivision rules not allowed!\n";
return false;
}
// check for subdivision type
assert(subdiv_type_ == 3 || subdiv_type_ == 4);
if (subdiv_type_ != 3 && subdiv_type_ != 4)
{
::omerr() << "Error! Unknown subdivision type in sequence!" << std::endl;
return false;
}
// set pointer to last rule
// first_rule_ = rule_sequence_.front();
// last_rule_ = rule_sequence_.back(); //[n_rules() - 1];
// set numbers and previous rule
for (size_t i = 0; i < n_rules(); ++i)
{
rule_sequence_[i]->set_subdiv_type(subdiv_type_);
rule_sequence_[i]->set_n_rules(n_rules());
rule_sequence_[i]->set_number(i);
rule_sequence_[i]->set_prev_rule(rule_sequence_[(i+n_rules()-1)%n_rules()]);
rule_sequence_[i]->set_subdiv_rule(subdiv_rule_);
}
return true;
}
// ----------------------------------------------------------------------------
#define MOBJ mesh_.deref
#define TVH to_vertex_handle
#define HEH halfedge_handle
#define NHEH next_halfedge_handle
#define PHEH prev_halfedge_handle
#define OHEH opposite_halfedge_handle
// ----------------------------------------------------------------------------
template<class M>
void CompositeT<M>::refine(typename M::FaceHandle& _fh)
{
std::vector<typename Mesh::HalfedgeHandle> hh_vector;
// -------------------- calculate new level for faces and vertices
int new_face_level =
t_rule()->number() + 1 +
((int)floor((float)(mesh_.data(_fh).state() - t_rule()->number() - 1)/n_rules()) + 1) * n_rules();
int new_vertex_level =
new_face_level + l_rule()->number() - t_rule()->number();
// -------------------- store old vertices
// !!! only triangle meshes supported!
typename Mesh::VertexHandle vh[3];
vh[0] = mesh_.TVH(mesh_.HEH(_fh));
vh[1] = mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh)));
vh[2] = mesh_.TVH(mesh_.PHEH(mesh_.HEH(_fh)));
// save handles to incoming halfedges for getting the new vertices
// after subdivision (1-4 split)
if (subdiv_type_ == 4)
{
hh_vector.clear();
// green face
if (mesh_.data(_fh).final())
{
typename Mesh::FaceHalfedgeIter fh_it(mesh_.fh_iter(_fh));
for (; fh_it.is_valid(); ++fh_it)
{
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(*fh_it)));
}
}
// red face
else
{
typename Mesh::HalfedgeHandle red_hh(mesh_.data(_fh).red_halfedge());
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.NHEH(red_hh))));
hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.PHEH(mesh_.OHEH(red_hh)))));
}
}
// -------------------- Average rule before topo rule?
if (t_rule()->number() > 0)
t_rule()->prev_rule()->raise(_fh, new_face_level-1);
// -------------------- Apply topological operator first
t_rule()->raise(_fh, new_face_level);
#if 0 // original code
assert(MOBJ(_fh).state() >=
subdiv_rule_->number()+1+(int) (MOBJ(_fh).state()/n_rules())*n_rules());
#else // improved code (use % operation and avoid floating point division)
assert( mesh_.data(_fh).state() >= ( t_rule()->number()+1+generation(_fh) ) );
#endif
// raise new vertices to final levels
if (subdiv_type_ == 3)
{
typename Mesh::VertexHandle new_vh(mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh))));
// raise new vertex to final level
l_rule()->raise(new_vh, new_vertex_level);
}
if (subdiv_type_ == 4)
{
typename Mesh::HalfedgeHandle hh;
typename Mesh::VertexHandle new_vh;
while (!hh_vector.empty()) {
hh = hh_vector.back();
hh_vector.pop_back();
// get new vertex
new_vh = mesh_.TVH(mesh_.NHEH(hh));
// raise new vertex to final level
l_rule()->raise(new_vh, new_vertex_level);
}
}
// raise old vertices to final position
l_rule()->raise(vh[0], new_vertex_level);
l_rule()->raise(vh[1], new_vertex_level);
l_rule()->raise(vh[2], new_vertex_level);
}
// ----------------------------------------------------------------------------
template<class M>
void CompositeT<M>::refine(typename M::VertexHandle& _vh)
{
// calculate next final level for vertex
int new_vertex_state = generation(_vh) + l_rule()->number() + 1;
// raise vertex to final position
l_rule()->raise(_vh, new_vertex_state);
}
// ----------------------------------------------------------------------------
template <class M>
std::string CompositeT<M>::rules_as_string(const std::string& _sep) const
{
std::string seq;
typename RuleSequence::const_iterator it = rule_sequence_.begin();
if ( it != rule_sequence_.end() )
{
seq = (*it)->type();
for (++it; it != rule_sequence_.end(); ++it )
{
seq += _sep;
seq += (*it)->type();
}
}
return seq;
}
// ----------------------------------------------------------------------------
#undef MOBJ
#undef TVH
#undef HEH
#undef NHEH
#undef PHEH
#undef OHEH
//=============================================================================
} // END_NS_ADAPTIVE
} // END_NS_SUBDIVIDER
} // END_NS_OPENMESH
//=============================================================================