Files
openmesh/src/OpenMesh/Tools/Decimater/ModRoundnessT.hh
Jan Möbius 505ab99324 Updated License Headers
git-svn-id: http://www.openmesh.org/svnrepo/OpenMesh/trunk@737 fdac6126-5c0c-442c-9429-916003d36597
2012-10-08 07:33:20 +00:00

321 lines
11 KiB
C++
Raw Blame History

/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2012 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see <http://www.gnu.org/licenses/>. *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
/** \file ModRoundnessT.hh
*/
//=============================================================================
//
// CLASS ModRoundnessT
//
//=============================================================================
#ifndef OPENMESH_DECIMATER_MODROUNDNESST_HH
#define OPENMESH_DECIMATER_MODROUNDNESST_HH
//== INCLUDES =================================================================
#include <OpenMesh/Tools/Decimater/ModBaseT.hh>
#include <math.h>
#if defined(OM_CC_MSVC)
# define OM_ENABLE_WARNINGS 4244
# pragma warning(disable : OM_ENABLE_WARNINGS )
#endif
//== NAMESPACE ================================================================
namespace OpenMesh { // BEGIN_NS_OPENMESH
namespace Decimater { // BEGIN_NS_DECIMATER
//== CLASS DEFINITION =========================================================
/** \brief Use Roundness of triangles to control decimation
*
*
* In binary and mode, the collapse is legal if:
* - The roundness after the collapse is greater than the given value
*
* In continuous mode the roundness after the collapse is returned
*/
template <class MeshT>
class ModRoundnessT : public ModBaseT<MeshT>
{
public:
DECIMATING_MODULE( ModRoundnessT, MeshT, Roundness );
public:
// typedefs
typedef typename Mesh::Point Point;
typedef typename vector_traits<Point>::value_type value_type;
public:
/// Constructor
ModRoundnessT( MeshT &_dec ) :
Base(_dec, false),
min_r_(-1.0)
{ }
/// Destructor
~ModRoundnessT() { }
public: // inherited
/** Compute collapse priority due to roundness of triangle.
*
* The roundness is computed by dividing the radius of the
* circumference by the length of the shortest edge. The result is
* normalized.
*
* \return [0:1] or ILLEGAL_COLLAPSE in non-binary mode
* \return LEGAL_COLLAPSE or ILLEGAL_COLLAPSE in binary mode
* \see set_min_roundness()
*/
float collapse_priority(const CollapseInfo& _ci)
{
// using namespace OpenMesh;
typename Mesh::ConstVertexOHalfedgeIter voh_it(Base::mesh(), _ci.v0);
double r;
double priority = 0.0; //==LEGAL_COLLAPSE
typename Mesh::FaceHandle fhC, fhB;
Vec3f B,C;
if ( min_r_ < 0.0 ) // continues mode
{
C = vector_cast<Vec3f>(Base::mesh().point( Base::mesh().to_vertex_handle(voh_it)));
fhC = Base::mesh().face_handle( voh_it.handle() );
for (++voh_it; voh_it; ++voh_it)
{
B = C;
fhB = fhC;
C = vector_cast<Vec3f>(Base::mesh().point(Base::mesh().to_vertex_handle(voh_it)));
fhC = Base::mesh().face_handle( voh_it.handle() );
if ( fhB == _ci.fl || fhB == _ci.fr )
continue;
// simulate collapse using position of v1
r = roundness( vector_cast<Vec3f>(_ci.p1), B, C );
// return the maximum non-roundness
priority = std::max( priority, (1.0-r) );
}
}
else // binary mode
{
C = vector_cast<Vec3f>(Base::mesh().point( Base::mesh().to_vertex_handle(voh_it)));
fhC = Base::mesh().face_handle( voh_it.handle() );
for (++voh_it; voh_it && (priority==Base::LEGAL_COLLAPSE); ++voh_it)
{
B = C;
fhB = fhC;
C = vector_cast<Vec3f>(Base::mesh().point(Base::mesh().to_vertex_handle(voh_it)));
fhC = Base::mesh().face_handle( voh_it.handle() );
if ( fhB == _ci.fl || fhB == _ci.fr )
continue;
priority = ( (r=roundness( vector_cast<Vec3f>(_ci.p1), B, C )) < min_r_)
? Base::ILLEGAL_COLLAPSE : Base::LEGAL_COLLAPSE;
}
}
return (float) priority;
}
/// set the percentage of minimum roundness
void set_error_tolerance_factor(double _factor) {
if (this->is_binary()) {
if (_factor >= 0.0 && _factor <= 1.0) {
// the smaller the factor, the smaller min_r_ gets
// thus creating a stricter constraint
// division by error_tolerance_factor_ is for normalization
value_type min_roundness = min_r_ * _factor / this->error_tolerance_factor_;
set_min_roundness(min_roundness);
this->error_tolerance_factor_ = _factor;
}
}
}
public: // specific methods
void set_min_angle( float _angle, bool /* _binary=true */ )
{
assert( _angle > 0 && _angle < 60 );
_angle = float(M_PI * _angle /180.0);
Vec3f A,B,C;
A = Vec3f( 0, 0, 0);
B = Vec3f( 2*cos(_angle), 0, 0);
C = Vec3f( cos(_angle), sin(_angle), 0);
double r1 = roundness(A,B,C);
_angle = float(0.5 * ( M_PI - _angle ));
A = Vec3f( 0, 0, 0);
B = Vec3f( 2*cos(_angle), 0, 0);
C = Vec3f( cos(_angle), sin(_angle), 0);
double r2 = roundness(A,B,C);
set_min_roundness( value_type(std::min(r1,r2)), true );
}
/** Set a minimum roundness value.
* \param _min_roundness in range (0,1)
* \param _binary Set true, if the binary mode should be enabled,
* else false. In latter case the collapse_priority()
* returns a float value if the constraint does not apply
* and ILLEGAL_COLLAPSE else.
*/
void set_min_roundness( value_type _min_roundness, bool _binary=true )
{
assert( 0.0 <= _min_roundness && _min_roundness <= 1.0 );
min_r_ = _min_roundness;
Base::set_binary(_binary);
}
/// Unset minimum value constraint and enable non-binary mode.
void unset_min_roundness()
{
min_r_ = -1.0;
Base::set_binary(false);
}
// Compute a normalized roundness of a triangle ABC
//
// Having
// A,B,C corner points of triangle
// a,b,c the vectors BC,CA,AB
// Area area of triangle
//
// then define
//
// radius of circumference
// R := -----------------------
// length of shortest edge
//
// ||a|| * ||b|| * ||c||
// ---------------------
// 4 * Area ||a|| * ||b|| * ||c||
// = ----------------------- = -----------------------------------
// min( ||a||,||b||,||c||) 4 * Area * min( ||a||,||b||,||c|| )
//
// ||a|| * ||b|| * ||c||
// = -------------------------------------------------------
// 4 * 1/2 * ||cross(B-A,C-A)|| * min( ||a||,||b||,||c|| )
//
// a'a * b'b * c'c
// R<> = ----------------------------------------------------------
// 4 * cross(B-A,C-A)'cross(B-A,C-A) * min( a'a, b'b, c'c )
//
// a'a * b'b * c'c
// R = 1/2 * sqrt(---------------------------)
// AA * min( a'a, b'b, c'c )
//
// At angle 60<36> R has it's minimum for all edge lengths = sqrt(1/3)
//
// Define normalized roundness
//
// nR := sqrt(1/3) / R
//
// AA * min( a'a, b'b, c'c )
// = sqrt(4/3) * sqrt(---------------------------)
// a'a * b'b * c'c
//
double roundness( const Vec3f& A, const Vec3f& B, const Vec3f &C )
{
const value_type epsilon = value_type(1e-15);
static const value_type sqrt43 = value_type(sqrt(4.0/3.0)); // 60<36>,a=b=c, **)
Vec3f vecAC = C-A;
Vec3f vecAB = B-A;
// compute squared values to avoid sqrt-computations
value_type aa = (B-C).sqrnorm();
value_type bb = vecAC.sqrnorm();
value_type cc = vecAB.sqrnorm();
value_type AA = cross(vecAC,vecAB).sqrnorm(); // without factor 1/4 **)
if ( AA < epsilon )
return 0.0;
double nom = AA * std::min( std::min(aa,bb),cc );
double denom = aa * bb * cc;
double nR = sqrt43 * sqrt(nom/denom);
return nR;
}
private:
value_type min_r_;
};
//=============================================================================
} // END_NS_DECIMATER
} // END_NS_OPENMESH
//=============================================================================
#if defined(OM_CC_MSVC) && defined(OM_ENABLE_WARNINGS)
# pragma warning(default : OM_ENABLE_WARNINGS)
# undef OM_ENABLE_WARNINGS
#endif
//=============================================================================
#endif // OPENMESH_DECIMATER_MODROUNDNESST_HH defined
//=============================================================================