Files
openmesh/src/OpenMesh/Tools/Decimater/ModAspectRatioT_impl.hh
2019-11-27 13:27:39 +01:00

198 lines
7.9 KiB
C++

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2015, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
/** \file ModAspectRatioT_impl.hh
*/
//=============================================================================
//
// CLASS ModAspectRatioT - IMPLEMENTATION
//
//=============================================================================
#define OPENMESH_DECIMATER_MODASPECTRATIOT_C
//== INCLUDES =================================================================
#include "ModAspectRatioT.hh"
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace Decimater {
//== IMPLEMENTATION ==========================================================
template<class MeshT>
typename ModAspectRatioT<MeshT>::Scalar ModAspectRatioT<MeshT>::aspectRatio(
const Point& _v0, const Point& _v1, const Point& _v2) {
Point d0 = _v0 - _v1;
Point d1 = _v1 - _v2;
// finds the max squared edge length
Scalar l2, maxl2 = d0.sqrnorm();
if ((l2 = d1.sqrnorm()) > maxl2)
maxl2 = l2;
// keep searching for the max squared edge length
d1 = _v2 - _v0;
if ((l2 = d1.sqrnorm()) > maxl2)
maxl2 = l2;
// squared area of the parallelogram spanned by d0 and d1
Scalar a2 = (d0 % d1).sqrnorm();
// the area of the triangle would be
// sqrt(a2)/2 or length * height / 2
// aspect ratio = length / height
// = length * length / (2*area)
// = length * length / sqrt(a2)
// returns the length of the longest edge
// divided by its corresponding height
return sqrt((maxl2 * maxl2) / a2);
}
//-----------------------------------------------------------------------------
template<class MeshT>
void ModAspectRatioT<MeshT>::initialize() {
typename Mesh::FaceIter f_it, f_end(mesh_.faces_end());
typename Mesh::FVIter fv_it;
for (f_it = mesh_.faces_begin(); f_it != f_end; ++f_it) {
fv_it = mesh_.fv_iter(*f_it);
typename Mesh::Point& p0 = mesh_.point(*fv_it);
typename Mesh::Point& p1 = mesh_.point(*(++fv_it));
typename Mesh::Point& p2 = mesh_.point(*(++fv_it));
mesh_.property(aspect_, *f_it) = static_cast<typename Mesh::Scalar>(1.0) / aspectRatio(p0, p1, p2);
}
}
//-----------------------------------------------------------------------------
template<class MeshT>
void ModAspectRatioT<MeshT>::preprocess_collapse(const CollapseInfo& _ci) {
typename Mesh::FaceHandle fh;
typename Mesh::FVIter fv_it;
for (typename Mesh::VFIter vf_it = mesh_.vf_iter(_ci.v0); vf_it.is_valid(); ++vf_it) {
fh = *vf_it;
if (fh != _ci.fl && fh != _ci.fr) {
fv_it = mesh_.fv_iter(fh);
typename Mesh::Point& p0 = mesh_.point(*fv_it);
typename Mesh::Point& p1 = mesh_.point(*(++fv_it));
typename Mesh::Point& p2 = mesh_.point(*(++fv_it));
mesh_.property(aspect_, fh) = static_cast<typename Mesh::Scalar>(1.0) / aspectRatio(p0, p1, p2);
}
}
}
//-----------------------------------------------------------------------------
template<class MeshT>
float ModAspectRatioT<MeshT>::collapse_priority(const CollapseInfo& _ci) {
typename Mesh::VertexHandle v2, v3;
typename Mesh::FaceHandle fh;
const typename Mesh::Point* p1(&_ci.p1);
typename Mesh::Scalar r0, r1, r0_min(1.0), r1_min(1.0);
typename Mesh::ConstVertexOHalfedgeIter voh_it(mesh_, _ci.v0);
v3 = mesh_.to_vertex_handle(*voh_it);
auto p3 = &mesh_.point(v3);
while (voh_it.is_valid()) {
v2 = v3;
auto p2 = p3;
++voh_it;
v3 = mesh_.to_vertex_handle(*voh_it);
p3 = &mesh_.point(v3);
fh = mesh_.face_handle(*voh_it);
// if not boundary
if (fh.is_valid()) {
// aspect before
if ((r0 = mesh_.property(aspect_, fh)) < r0_min)
r0_min = r0;
// aspect after
if (!(v2 == _ci.v1 || v3 == _ci.v1))
if ((r1 = static_cast<typename Mesh::Scalar>(1.0) / aspectRatio(*p1, *p2, *p3)) < r1_min)
r1_min = r1;
}
}
if (Base::is_binary()) {
return
((r1_min > r0_min) || (r1_min > min_aspect_)) ? float(Base::LEGAL_COLLAPSE) :
float(Base::ILLEGAL_COLLAPSE);
} else {
if (r1_min > r0_min)
return 1.f - float(r1_min);
else
return
(r1_min > min_aspect_) ? 2.f - float(r1_min) : float(Base::ILLEGAL_COLLAPSE);
}
}
//-----------------------------------------------------------------------------
template<class MeshT>
void ModAspectRatioT<MeshT>::set_error_tolerance_factor(double _factor) {
if (_factor >= 0.0 && _factor <= 1.0) {
// the smaller the factor, the larger min_aspect_ gets
// thus creating a stricter constraint
// division by (2.0 - error_tolerance_factor_) is for normalization
float min_aspect = min_aspect_ * (2.f - float(_factor)) / (2.f - float(this->error_tolerance_factor_));
set_aspect_ratio(1.f/min_aspect);
this->error_tolerance_factor_ = _factor;
}
}
//=============================================================================
}
}
//=============================================================================