Files
openmesh/src/OpenMesh/Core/Mesh/CirculatorsT.hh
2009-12-07 15:11:28 +00:00

3589 lines
89 KiB
C++

/*===========================================================================*\
* *
* OpenMesh *
* Copyright (C) 2001-2009 by Computer Graphics Group, RWTH Aachen *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
* *
* OpenMesh is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of *
* the License, or (at your option) any later version with the *
* following exceptions: *
* *
* If other files instantiate templates or use macros *
* or inline functions from this file, or you compile this file and *
* link it with other files to produce an executable, this file does *
* not by itself cause the resulting executable to be covered by the *
* GNU Lesser General Public License. This exception does not however *
* invalidate any other reasons why the executable file might be *
* covered by the GNU Lesser General Public License. *
* *
* OpenMesh is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU LesserGeneral Public *
* License along with OpenMesh. If not, *
* see <http://www.gnu.org/licenses/>. *
* *
\*===========================================================================*/
/*===========================================================================*\
* *
* $Revision$ *
* $Date$ *
* *
\*===========================================================================*/
#ifndef OPENMESH_CIRCULATORS_HH
#define OPENMESH_CIRCULATORS_HH
//=============================================================================
//
// Vertex and Face circulators for PolyMesh/TriMesh
//
//=============================================================================
//== INCLUDES =================================================================
#include <OpenMesh/Core/System/config.h>
#include <assert.h>
//== NAMESPACES ===============================================================
namespace OpenMesh {
namespace Iterators {
//== FORWARD DECLARATIONS =====================================================
template <class Mesh> class VertexVertexIterT;
template <class Mesh> class VertexIHalfedgeIterT;
template <class Mesh> class VertexOHalfedgeIterT;
template <class Mesh> class VertexEdgeIterT;
template <class Mesh> class VertexFaceIterT;
template <class Mesh> class ConstVertexVertexIterT;
template <class Mesh> class ConstVertexIHalfedgeIterT;
template <class Mesh> class ConstVertexOHalfedgeIterT;
template <class Mesh> class ConstVertexEdgeIterT;
template <class Mesh> class ConstVertexFaceIterT;
template <class Mesh> class FaceVertexIterT;
template <class Mesh> class FaceHalfedgeIterT;
template <class Mesh> class FaceEdgeIterT;
template <class Mesh> class FaceFaceIterT;
template <class Mesh> class ConstFaceVertexIterT;
template <class Mesh> class ConstFaceHalfedgeIterT;
template <class Mesh> class ConstFaceEdgeIterT;
template <class Mesh> class ConstFaceFaceIterT;
//== CLASS DEFINITION =========================================================
/** \class VertexVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class VertexVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
VertexVertexIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
VertexVertexIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
VertexVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
VertexVertexIterT(const VertexVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
VertexVertexIterT& operator=(const VertexVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
VertexVertexIterT(const VertexVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
VertexVertexIterT& operator=(const VertexVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const VertexVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const VertexVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
VertexVertexIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
VertexVertexIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);;
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstVertexVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstVertexVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
ConstVertexVertexIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
ConstVertexVertexIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstVertexVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstVertexVertexIterT(const ConstVertexVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstVertexVertexIterT& operator=(const ConstVertexVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstVertexVertexIterT(const VertexVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstVertexVertexIterT& operator=(const VertexVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstVertexVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstVertexVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstVertexVertexIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstVertexVertexIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);;
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class VertexOHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class VertexOHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
VertexOHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
VertexOHalfedgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
VertexOHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
VertexOHalfedgeIterT(const VertexOHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
VertexOHalfedgeIterT& operator=(const VertexOHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
VertexOHalfedgeIterT(const VertexOHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
VertexOHalfedgeIterT& operator=(const VertexOHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexOHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const VertexOHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const VertexOHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
VertexOHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
VertexOHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstVertexOHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstVertexOHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
ConstVertexOHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
ConstVertexOHalfedgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstVertexOHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstVertexOHalfedgeIterT(const ConstVertexOHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstVertexOHalfedgeIterT& operator=(const ConstVertexOHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstVertexOHalfedgeIterT(const VertexOHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstVertexOHalfedgeIterT& operator=(const VertexOHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexOHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstVertexOHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstVertexOHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstVertexOHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstVertexOHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class VertexIHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class VertexIHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
VertexIHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
VertexIHalfedgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
VertexIHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
VertexIHalfedgeIterT(const VertexIHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
VertexIHalfedgeIterT& operator=(const VertexIHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
VertexIHalfedgeIterT(const VertexIHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
VertexIHalfedgeIterT& operator=(const VertexIHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexIHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const VertexIHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const VertexIHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
VertexIHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
VertexIHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return mesh_->opposite_halfedge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return mesh_->opposite_halfedge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstVertexIHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstVertexIHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
ConstVertexIHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
ConstVertexIHalfedgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstVertexIHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstVertexIHalfedgeIterT(const ConstVertexIHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstVertexIHalfedgeIterT& operator=(const ConstVertexIHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstVertexIHalfedgeIterT(const VertexIHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstVertexIHalfedgeIterT& operator=(const VertexIHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexIHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstVertexIHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstVertexIHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstVertexIHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstVertexIHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return mesh_->opposite_halfedge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return mesh_->opposite_halfedge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class VertexEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class VertexEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
VertexEdgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
VertexEdgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
VertexEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
VertexEdgeIterT(const VertexEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
VertexEdgeIterT& operator=(const VertexEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
VertexEdgeIterT(const VertexEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
VertexEdgeIterT& operator=(const VertexEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const VertexEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const VertexEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
VertexEdgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
VertexEdgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstVertexEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstVertexEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
ConstVertexEdgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
ConstVertexEdgeIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstVertexEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstVertexEdgeIterT(const ConstVertexEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstVertexEdgeIterT& operator=(const ConstVertexEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstVertexEdgeIterT(const VertexEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstVertexEdgeIterT& operator=(const VertexEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstVertexEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstVertexEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstVertexEdgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->cw_rotated_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstVertexEdgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->ccw_rotated_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class VertexFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class VertexFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
VertexFaceIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
VertexFaceIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
VertexFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
VertexFaceIterT(const VertexFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
VertexFaceIterT& operator=(const VertexFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
VertexFaceIterT(const VertexFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
VertexFaceIterT& operator=(const VertexFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const VertexFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const VertexFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
VertexFaceIterT& operator++() {
assert(mesh_);
active_ = true;
do heh_=mesh_->cw_rotated_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/// Pre-Decrement (next ccw target)
VertexFaceIterT& operator--() {
assert(mesh_);
active_ = true;
do heh_=mesh_->ccw_rotated_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstVertexFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstVertexFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
ConstVertexFaceIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::VertexHandle
ConstVertexFaceIterT(mesh_ref _mesh, typename Mesh::VertexHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
ConstVertexFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
ConstVertexFaceIterT(const ConstVertexFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
ConstVertexFaceIterT& operator=(const ConstVertexFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstVertexFaceIterT(const VertexFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
ConstVertexFaceIterT& operator=(const VertexFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstVertexFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstVertexFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstVertexFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstVertexFaceIterT& operator++() {
assert(mesh_);
active_ = true;
do heh_=mesh_->cw_rotated_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstVertexFaceIterT& operator--() {
assert(mesh_);
active_ = true;
do heh_=mesh_->ccw_rotated_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
FaceVertexIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceVertexIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
FaceVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
FaceVertexIterT(const FaceVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
FaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceVertexIterT(const FaceVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
FaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const FaceVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceVertexIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceVertexIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceVertexIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceVertexIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Vertex value_type;
typedef typename Mesh::VertexHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Vertex& reference;
typedef const typename Mesh::Vertex* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Vertex& reference;
typedef typename Mesh::Vertex* pointer;
#endif
/// Default constructor
ConstFaceVertexIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceVertexIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceVertexIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstFaceVertexIterT(const ConstFaceVertexIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstFaceVertexIterT& operator=(const ConstFaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceVertexIterT(const FaceVertexIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstFaceVertexIterT& operator=(const FaceVertexIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceVertexIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceVertexIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstFaceVertexIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceVertexIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceVertexIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::VertexHandle handle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::VertexHandle() const {
assert(mesh_);
return mesh_->to_vertex_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
FaceHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceHalfedgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
FaceHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
FaceHalfedgeIterT(const FaceHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
FaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceHalfedgeIterT(const FaceHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
FaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const FaceHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceHalfedgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceHalfedgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Halfedge value_type;
typedef typename Mesh::HalfedgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Halfedge& reference;
typedef const typename Mesh::Halfedge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Halfedge& reference;
typedef typename Mesh::Halfedge* pointer;
#endif
/// Default constructor
ConstFaceHalfedgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceHalfedgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceHalfedgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstFaceHalfedgeIterT(const ConstFaceHalfedgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstFaceHalfedgeIterT& operator=(const ConstFaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceHalfedgeIterT(const FaceHalfedgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstFaceHalfedgeIterT& operator=(const FaceHalfedgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceHalfedgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceHalfedgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstFaceHalfedgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceHalfedgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceHalfedgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::HalfedgeHandle handle() const {
assert(mesh_);
return heh_;
}
/// Cast to the handle of the current target.
operator typename Mesh::HalfedgeHandle() const {
assert(mesh_);
return heh_;
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
FaceEdgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceEdgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
FaceEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
FaceEdgeIterT(const FaceEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
FaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceEdgeIterT(const FaceEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
FaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const FaceEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceEdgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceEdgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceEdgeIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceEdgeIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Edge value_type;
typedef typename Mesh::EdgeHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Edge& reference;
typedef const typename Mesh::Edge* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Edge& reference;
typedef typename Mesh::Edge* pointer;
#endif
/// Default constructor
ConstFaceEdgeIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceEdgeIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ ; }
/// Construct with mesh and start halfedge
ConstFaceEdgeIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ ; }
/// Copy constructor
ConstFaceEdgeIterT(const ConstFaceEdgeIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// Assignment operator
ConstFaceEdgeIterT& operator=(const ConstFaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceEdgeIterT(const FaceEdgeIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ ; }
/// assign from non-const circulator
ConstFaceEdgeIterT& operator=(const FaceEdgeIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceEdgeIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceEdgeIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstFaceEdgeIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceEdgeIterT& operator++() {
assert(mesh_);
active_ = true;
heh_=mesh_->next_halfedge_handle(heh_);;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceEdgeIterT& operator--() {
assert(mesh_);
active_ = true;
heh_=mesh_->prev_halfedge_handle(heh_);;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::EdgeHandle handle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Cast to the handle of the current target.
operator typename Mesh::EdgeHandle() const {
assert(mesh_);
return mesh_->edge_handle(heh_);
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class FaceFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class FaceFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 0
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
FaceFaceIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
FaceFaceIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
FaceFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
FaceFaceIterT(const FaceFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
FaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 0
/// construct from non-const circulator type
FaceFaceIterT(const FaceFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
FaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const FaceFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const FaceFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
FaceFaceIterT& operator++() {
assert(mesh_);
active_ = true;
do heh_=mesh_->next_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/// Pre-Decrement (next ccw target)
FaceFaceIterT& operator--() {
assert(mesh_);
active_ = true;
do heh_=mesh_->prev_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//== CLASS DEFINITION =========================================================
/** \class ConstFaceFaceIterT CirculatorsT.hh <OpenMesh/Mesh/Iterators/CirculatorsT.hh>
Circulator.
*/
template <class Mesh>
class ConstFaceFaceIterT
{
public:
//--- Typedefs ---
typedef typename Mesh::HalfedgeHandle HalfedgeHandle;
typedef typename Mesh::Face value_type;
typedef typename Mesh::FaceHandle value_handle;
#if 1
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef const Mesh& mesh_ref;
typedef const Mesh* mesh_ptr;
typedef const typename Mesh::Face& reference;
typedef const typename Mesh::Face* pointer;
#else
typedef std::bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef Mesh& mesh_ref;
typedef Mesh* mesh_ptr;
typedef typename Mesh::Face& reference;
typedef typename Mesh::Face* pointer;
#endif
/// Default constructor
ConstFaceFaceIterT() : mesh_(0), active_(false) {}
/// Construct with mesh and a typename Mesh::FaceHandle
ConstFaceFaceIterT(mesh_ref _mesh, typename Mesh::FaceHandle _start) :
mesh_(&_mesh),
start_(_mesh.halfedge_handle(_start)),
heh_(start_),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Construct with mesh and start halfedge
ConstFaceFaceIterT(mesh_ref _mesh, HalfedgeHandle _heh) :
mesh_(&_mesh),
start_(_heh),
heh_(_heh),
active_(false)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Copy constructor
ConstFaceFaceIterT(const ConstFaceFaceIterT& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// Assignment operator
ConstFaceFaceIterT& operator=(const ConstFaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#if 1
/// construct from non-const circulator type
ConstFaceFaceIterT(const FaceFaceIterT<Mesh>& _rhs) :
mesh_(_rhs.mesh_),
start_(_rhs.start_),
heh_(_rhs.heh_),
active_(_rhs.active_)
{ if (heh_.is_valid() && !handle().is_valid()) operator++();; }
/// assign from non-const circulator
ConstFaceFaceIterT& operator=(const FaceFaceIterT<Mesh>& _rhs)
{
mesh_ = _rhs.mesh_;
start_ = _rhs.start_;
heh_ = _rhs.heh_;
active_ = _rhs.active_;
return *this;
}
#else
friend class ConstFaceFaceIterT<Mesh>;
#endif
/// Equal ?
bool operator==(const ConstFaceFaceIterT& _rhs) const {
return ((mesh_ == _rhs.mesh_) &&
(start_ == _rhs.start_) &&
(heh_ == _rhs.heh_) &&
(active_ == _rhs.active_));
}
/// Not equal ?
bool operator!=(const ConstFaceFaceIterT& _rhs) const {
return !operator==(_rhs);
}
/// Pre-Increment (next cw target)
ConstFaceFaceIterT& operator++() {
assert(mesh_);
active_ = true;
do heh_=mesh_->next_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/// Pre-Decrement (next ccw target)
ConstFaceFaceIterT& operator--() {
assert(mesh_);
active_ = true;
do heh_=mesh_->prev_halfedge_handle(heh_); while ((*this) && (!handle().is_valid()));;
return *this;
}
/** Get the current halfedge. There are \c Vertex*Iters and \c
Face*Iters. For both the current state is defined by the
current halfedge. This is what this method returns.
*/
HalfedgeHandle current_halfedge_handle() const {
return heh_;
}
/// Return the handle of the current target.
typename Mesh::FaceHandle handle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Cast to the handle of the current target.
operator typename Mesh::FaceHandle() const {
assert(mesh_);
return mesh_->face_handle(mesh_->opposite_halfedge_handle(heh_));
}
/// Return a reference to the current target.
reference operator*() const {
assert(mesh_);
return mesh_->deref(handle());
}
/// Return a pointer to the current target.
pointer operator->() const {
assert(mesh_);
return &mesh_->deref(handle());
}
/** Returns whether the circulator is still valid.
After one complete round around a vertex/face the circulator becomes
invalid, i.e. this function will return \c false. Nevertheless you
can continue circulating. This method just tells you whether you
have completed the first round.
*/
operator bool() const {
return heh_.is_valid() && ((start_ != heh_) || (!active_));
}
protected:
mesh_ptr mesh_;
HalfedgeHandle start_, heh_;
bool active_;
};
//=============================================================================
} // namespace Iterators
} // namespace OpenMesh
//=============================================================================
#endif
//=============================================================================