Files
openmesh/src/Unittests/unittests_smart_handles.cc
2019-09-27 09:29:27 +02:00

461 lines
15 KiB
C++

#include <gtest/gtest.h>
#include <Unittests/unittests_common.hh>
#include <OpenMesh/Core/Mesh/SmartHandles.hh>
#include <iostream>
#include <chrono>
namespace {
class OpenMeshSmartHandles : public OpenMeshBase {
protected:
// This function is called before each test is run
virtual void SetUp() {
mesh_.clear();
// Add some vertices
Mesh::VertexHandle vhandle[8];
vhandle[0] = mesh_.add_vertex(Mesh::Point(-1, -1, 1));
vhandle[1] = mesh_.add_vertex(Mesh::Point( 1, -1, 1));
vhandle[2] = mesh_.add_vertex(Mesh::Point( 1, 1, 1));
vhandle[3] = mesh_.add_vertex(Mesh::Point(-1, 1, 1));
vhandle[4] = mesh_.add_vertex(Mesh::Point(-1, -1, -1));
vhandle[5] = mesh_.add_vertex(Mesh::Point( 1, -1, -1));
vhandle[6] = mesh_.add_vertex(Mesh::Point( 1, 1, -1));
vhandle[7] = mesh_.add_vertex(Mesh::Point(-1, 1, -1));
// Add six faces to form a cube
std::vector<Mesh::VertexHandle> face_vhandles;
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[3]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[3]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[4]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[1]);
face_vhandles.push_back(vhandle[5]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[5]);
face_vhandles.push_back(vhandle[6]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[2]);
face_vhandles.push_back(vhandle[6]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[6]);
face_vhandles.push_back(vhandle[7]);
mesh_.add_face(face_vhandles);
//=======================
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[3]);
face_vhandles.push_back(vhandle[7]);
mesh_.add_face(face_vhandles);
face_vhandles.clear();
face_vhandles.push_back(vhandle[0]);
face_vhandles.push_back(vhandle[7]);
face_vhandles.push_back(vhandle[4]);
mesh_.add_face(face_vhandles);
// Test setup:
//
//
// 3 ======== 2
// / /|
// / / | z
// 0 ======== 1 | |
// | | | | y
// | 7 | 6 | /
// | | / | /
// | |/ |/
// 4 ======== 5 -------> x
//
// Check setup
EXPECT_EQ(18u, mesh_.n_edges() ) << "Wrong number of Edges";
EXPECT_EQ(36u, mesh_.n_halfedges() ) << "Wrong number of HalfEdges";
EXPECT_EQ(8u, mesh_.n_vertices() ) << "Wrong number of vertices";
EXPECT_EQ(12u, mesh_.n_faces() ) << "Wrong number of faces";
}
// This function is called after all tests are through
virtual void TearDown() {
// Do some final stuff with the member data here...
mesh_.clear();
}
// Member already defined in OpenMeshBase
//Mesh mesh_;
};
/*
* ====================================================================
* Define tests below
* ====================================================================
*/
/* Test if navigation operations on smart handles yield the expected element
*/
TEST_F(OpenMeshSmartHandles, SimpleNavigation)
{
for (auto vh : mesh_.vertices())
{
EXPECT_EQ(mesh_.halfedge_handle(vh), vh.halfedge()) << "outgoing halfedge of vertex does not match";
}
for (auto heh : mesh_.halfedges())
{
EXPECT_EQ(mesh_.next_halfedge_handle(heh), heh.next()) << "next halfedge of halfedge does not match";
EXPECT_EQ(mesh_.prev_halfedge_handle(heh), heh.prev()) << "prevt halfedge of halfedge does not match";
EXPECT_EQ(mesh_.opposite_halfedge_handle(heh), heh.opp()) << "opposite halfedge of halfedge does not match";
EXPECT_EQ(mesh_.to_vertex_handle(heh), heh.to()) << "to vertex handle of halfedge does not match";
EXPECT_EQ(mesh_.from_vertex_handle(heh), heh.from()) << "from vertex handle of halfedge does not match";
EXPECT_EQ(mesh_.face_handle(heh), heh.face()) << "face handle of halfedge does not match";
}
for (auto eh : mesh_.edges())
{
EXPECT_EQ(mesh_.halfedge_handle(eh, 0), eh.h0()) << "halfedge 0 of edge does not match";
EXPECT_EQ(mesh_.halfedge_handle(eh, 1), eh.h1()) << "halfedge 1 of edge does not match";
EXPECT_EQ(mesh_.from_vertex_handle(mesh_.halfedge_handle(eh, 0)), eh.v0()) << "first vertex of edge does not match";
EXPECT_EQ(mesh_.to_vertex_handle (mesh_.halfedge_handle(eh, 0)), eh.v1()) << "second vertex of edge does not match";
}
for (auto fh : mesh_.faces())
{
EXPECT_EQ(mesh_.halfedge_handle(fh), fh.halfedge()) << "halfedge of face does not match";
}
}
/* Test if ranges yield the same elements when using smart handles
*/
TEST_F(OpenMeshSmartHandles, SimpleRanges)
{
for (auto vh : mesh_.vertices())
{
{
std::vector<OpenMesh::VertexHandle> handles0;
std::vector<OpenMesh::VertexHandle> handles1;
for (auto h : mesh_.vv_range(vh))
handles0.push_back(h);
for (auto h : vh.vertices())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "vertex range of vertex does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.voh_range(vh))
handles0.push_back(h);
for (auto h : vh.outgoing_halfedges())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "outgoing halfedge range of vertex does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.vih_range(vh))
handles0.push_back(h);
for (auto h : vh.incoming_halfedges())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "incoming halfedge range of vertex does not match";
}
{
std::vector<OpenMesh::EdgeHandle> handles0;
std::vector<OpenMesh::EdgeHandle> handles1;
for (auto h : mesh_.ve_range(vh))
handles0.push_back(h);
for (auto h : vh.edges())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "edge range of vertex does not match";
}
{
std::vector<OpenMesh::FaceHandle> handles0;
std::vector<OpenMesh::FaceHandle> handles1;
for (auto h : mesh_.vf_range(vh))
handles0.push_back(h);
for (auto h : vh.faces())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "face range of vertex does not match";
}
}
for (auto fh : mesh_.faces())
{
{
std::vector<OpenMesh::VertexHandle> handles0;
std::vector<OpenMesh::VertexHandle> handles1;
for (auto h : mesh_.fv_range(fh))
handles0.push_back(h);
for (auto h : fh.vertices())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "vertex range of face does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.fh_range(fh))
handles0.push_back(h);
for (auto h : fh.halfedges())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "halfedge range of face does not match";
}
{
std::vector<OpenMesh::EdgeHandle> handles0;
std::vector<OpenMesh::EdgeHandle> handles1;
for (auto h : mesh_.fe_range(fh))
handles0.push_back(h);
for (auto h : fh.edges())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "edge range of face does not match";
}
{
std::vector<OpenMesh::FaceHandle> handles0;
std::vector<OpenMesh::FaceHandle> handles1;
for (auto h : mesh_.ff_range(fh))
handles0.push_back(h);
for (auto h : fh.faces())
handles1.push_back(h);
EXPECT_EQ(handles0, handles1) << "face range of face does not match";
}
}
}
/* Test if ranges yield the same elements when using smart handles
*/
TEST_F(OpenMeshSmartHandles, RangesOfRanges)
{
for (auto vh : mesh_.vertices())
{
{
std::vector<OpenMesh::VertexHandle> handles0;
std::vector<OpenMesh::VertexHandle> handles1;
for (auto h : mesh_.vv_range(vh))
for (auto h2 : mesh_.vv_range(h))
handles0.push_back(h2);
for (auto h : vh.vertices())
for (auto h2 : h.vertices())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "vertex range of vertex range does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.vv_range(vh))
for (auto h2 : mesh_.voh_range(h))
handles0.push_back(h2);
for (auto h : vh.vertices())
for (auto h2 : h.outgoing_halfedges())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "outgoing halfedge range of vertex range does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.vv_range(vh))
for (auto h2 : mesh_.vih_range(h))
handles0.push_back(h2);
for (auto h : vh.vertices())
for (auto h2 : h.incoming_halfedges())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "incoming halfedge range of vertex range does not match";
}
{
std::vector<OpenMesh::EdgeHandle> handles0;
std::vector<OpenMesh::EdgeHandle> handles1;
for (auto h : mesh_.vv_range(vh))
for (auto h2 : mesh_.ve_range(h))
handles0.push_back(h2);
for (auto h : vh.vertices())
for (auto h2 : h.edges())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "edge range of vertex range does not match";
}
{
std::vector<OpenMesh::FaceHandle> handles0;
std::vector<OpenMesh::FaceHandle> handles1;
for (auto h : mesh_.vv_range(vh))
for (auto h2 : mesh_.vf_range(h))
handles0.push_back(h2);
for (auto h : vh.vertices())
for (auto h2 : h.faces())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "face range of vertex range does not match";
}
{
std::vector<OpenMesh::VertexHandle> handles0;
std::vector<OpenMesh::VertexHandle> handles1;
for (auto h : mesh_.vf_range(vh))
for (auto h2 : mesh_.fv_range(h))
handles0.push_back(h2);
for (auto h : vh.faces())
for (auto h2 : h.vertices())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "vertex range of face range does not match";
}
{
std::vector<OpenMesh::HalfedgeHandle> handles0;
std::vector<OpenMesh::HalfedgeHandle> handles1;
for (auto h : mesh_.vf_range(vh))
for (auto h2 : mesh_.fh_range(h))
handles0.push_back(h2);
for (auto h : vh.faces())
for (auto h2 : h.halfedges())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "vertex range of face range does not match";
}
{
std::vector<OpenMesh::FaceHandle> handles0;
std::vector<OpenMesh::FaceHandle> handles1;
for (auto h : mesh_.vf_range(vh))
for (auto h2 : mesh_.ff_range(h))
handles0.push_back(h2);
for (auto h : vh.faces())
for (auto h2 : h.faces())
handles1.push_back(h2);
EXPECT_EQ(handles0, handles1) << "vertex range of face range does not match";
}
}
}
/* Test a chain of navigation on a cube
*/
TEST_F(OpenMeshSmartHandles, ComplicatedNavigtaion)
{
for (auto vh : mesh_.vertices())
{
EXPECT_EQ(mesh_.next_halfedge_handle(
mesh_.opposite_halfedge_handle(
mesh_.halfedge_handle(vh))),
vh.out().opp().next());
EXPECT_EQ(mesh_.prev_halfedge_handle(
mesh_.prev_halfedge_handle(
mesh_.opposite_halfedge_handle(
mesh_.next_halfedge_handle(
mesh_.next_halfedge_handle(
mesh_.halfedge_handle(vh)))))),
vh.out().next().next().opp().prev().prev());
EXPECT_EQ(mesh_.face_handle(
mesh_.opposite_halfedge_handle(
mesh_.halfedge_handle(
mesh_.face_handle(
mesh_.opposite_halfedge_handle(
mesh_.next_halfedge_handle(
mesh_.halfedge_handle(vh))))))),
vh.out().next().opp().face().halfedge().opp().face());
}
}
/* Test performance of smart handles
*/
TEST_F(OpenMeshSmartHandles, Performance)
{
int n_tests = 10000000;
auto t_before_old = std::chrono::high_resolution_clock::now();
std::vector<OpenMesh::HalfedgeHandle> halfedges0;
for (int i = 0; i < n_tests; ++i)
{
for (auto vh : mesh_.vertices())
{
auto heh = mesh_.prev_halfedge_handle(
mesh_.prev_halfedge_handle(
mesh_.opposite_halfedge_handle(
mesh_.next_halfedge_handle(
mesh_.next_halfedge_handle(
mesh_.halfedge_handle(vh))))));
if (i == 0)
halfedges0.push_back(heh);
}
}
auto t_after_old = std::chrono::high_resolution_clock::now();
std::vector<OpenMesh::HalfedgeHandle> halfedges1;
for (int i = 0; i < n_tests; ++i)
{
for (auto vh : mesh_.vertices())
{
auto heh = vh.out().next().next().opp().prev().prev();
if (i == 0)
halfedges1.push_back(heh);
}
}
auto t_after_new = std::chrono::high_resolution_clock::now();
std::cout << "Conventional navigation took " << std::chrono::duration_cast<std::chrono::milliseconds>(t_after_old-t_before_old).count() << "ms" << std::endl;
std::cout << "SmartHandle navigation took " << std::chrono::duration_cast<std::chrono::milliseconds>(t_after_new-t_after_old ).count() << "ms" << std::endl;
EXPECT_EQ(halfedges0, halfedges1) << "halfedges do not match";
}
}