Files
openmesh/src/OpenMesh/Apps/Subdivider/adaptive_subdivider.cc
Jan Möbius ea844d6788 Changed OpenMesh directory structure
git-svn-id: http://www.openmesh.org/svnrepo/OpenMesh/trunk@106 fdac6126-5c0c-442c-9429-916003d36597
2009-04-30 12:41:50 +00:00

468 lines
12 KiB
C++

// ============================================================================
// -------------------------------------------------------------- includes ----
// -------------------- OpenMesh
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <OpenMesh/Tools/Utils/Timer.hh>
#include <OpenMesh/Tools/Utils/getopt.h>
// -------------------- OpenMesh Adaptive Composite Subdivider
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/CompositeT.hh>
#include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RulesT.hh>
// -------------------- STL
#include <iostream>
#include <fstream>
#include <sstream>
#if defined(OM_CC_MIPS)
# include <math.h>
#else
# include <cmath>
using std::pow;
#endif
using OpenMesh::Subdivider::Adaptive::CompositeTraits;
// define mesh, rule interface, and subdivider types
typedef OpenMesh::TriMesh_ArrayKernelT<CompositeTraits> MyMesh;
typedef OpenMesh::Subdivider::Adaptive::RuleInterfaceT<MyMesh> Rule;
typedef OpenMesh::Subdivider::Adaptive::CompositeT<MyMesh> Subdivider;
// ----------------------------------------------------------------------------
using namespace OpenMesh::Subdivider;
// factory function to add a RULE to a subdivider
#define ADD_FN( RULE ) \
bool add_ ## RULE( Subdivider& _sub ) \
{ return _sub.add< Adaptive:: RULE < MyMesh > >(); }
ADD_FN( Tvv3 );
ADD_FN( Tvv4 );
ADD_FN( VF );
ADD_FN( FF );
ADD_FN( FFc );
ADD_FN( FV );
ADD_FN( FVc );
ADD_FN( VV );
ADD_FN( VVc );
ADD_FN( VE );
ADD_FN( VdE );
ADD_FN( VdEc );
ADD_FN( EV );
ADD_FN( EVc );
ADD_FN( EF );
ADD_FN( FE );
ADD_FN( EdE );
ADD_FN( EdEc );
#undef ADD_FN
typedef bool (*add_rule_ft)( Subdivider& );
// map rule name to factory function
struct RuleMap : std::map< std::string, add_rule_ft >
{
RuleMap()
{
#define ADD( RULE ) \
(*this)[ #RULE ] = add_##RULE;
ADD( Tvv3 );
ADD( Tvv4 );
ADD( VF );
ADD( FF );
ADD( FFc );
ADD( FV );
ADD( FVc );
ADD( VV );
ADD( VVc );
ADD( VE );
ADD( VdE );
ADD( VdEc );
ADD( EV );
ADD( EVc );
ADD( EF );
ADD( FE );
ADD( EdE );
ADD( EdEc );
#undef ADD
}
} available_rules;
// ----------------------------------------------------------------------------
std::string basename( const std::string& _fname );
void usage_and_exit(const std::string& _fname, int xcode);
// ----------------------------------------------------------------------------
int main(int argc, char **argv)
{
size_t n_iter = 0; // n iteration
size_t max_nv = size_t(-1); // max. number of vertices in the end
std::string ifname; // input mesh
std::string ofname; // output mesh
std::string rule_sequence = "Tvv3 VF FF FVc"; // sqrt3 default
bool uniform = false;
int c;
// ---------------------------------------- evaluate command line
while ( (c=getopt(argc, argv, "hlm:n:r:sU"))!=-1 )
{
switch(c)
{
case 's': rule_sequence = "Tvv3 VF FF FVc"; break; // sqrt3
case 'l': rule_sequence = "Tvv4 VdE EVc VdE EVc"; break; // loop
case 'n': { std::stringstream s; s << optarg; s >> n_iter; } break;
case 'm': { std::stringstream s; s << optarg; s >> max_nv; } break;
case 'r': rule_sequence = optarg; break;
case 'U': uniform = true; break;
case 'h': usage_and_exit(argv[0],0);
case '?':
default: usage_and_exit(argv[0],1);
}
}
if ( optind == argc )
usage_and_exit(argv[0],2);
if ( optind < argc )
ifname = argv[optind++];
if ( optind < argc )
ofname = argv[optind++];
// if ( optind < argc ) // too many arguments
// ---------------------------------------- mesh and subdivider
MyMesh mesh;
Subdivider subdivider(mesh);
// -------------------- read mesh from file
std::cout << "Input mesh : " << ifname << std::endl;
if (!OpenMesh::IO::read_mesh(mesh, ifname))
{
std::cerr << " Error reading file!\n";
return 1;
}
// store orignal size of mesh
size_t n_vertices = mesh.n_vertices();
size_t n_edges = mesh.n_edges();
size_t n_faces = mesh.n_faces();
if ( n_iter > 0 )
std::cout << "Desired #iterations: " << n_iter << std::endl;
if ( max_nv < size_t(-1) )
{
std::cout << "Desired max. #V : " << max_nv << std::endl;
if (!n_iter )
n_iter = size_t(-1);
}
// -------------------- Setup rule sequence
{
std::stringstream s;
std::string token;
RuleMap::iterator it = available_rules.end();
for (s << rule_sequence; s >> token; )
{
if ( (it=available_rules.find( token )) != available_rules.end() )
{
it->second( subdivider );
}
else if ( token[0]=='(' && (subdivider.n_rules() > 0) )
{
std::string::size_type beg(1);
if (token.length()==1)
{
s >> token;
beg = 0;
}
std::string::size_type
end = token.find_last_of(')');
std::string::size_type
size = end==std::string::npos ? token.size()-beg : end-beg;
std::stringstream v;
MyMesh::Scalar coeff;
std::cout << " " << token << std::endl;
std::cout << " " << beg << " " << end << " " << size << std::endl;
v << token.substr(beg, size);
v >> coeff;
std::cout << " coeffecient " << coeff << std::endl;
subdivider.rule( subdivider.n_rules()-1 ).set_coeff(coeff);
if (end == std::string::npos)
{
s >> token;
if (token[0]!=')')
{
std::cerr << "Syntax error: Missing ')'\n";
return 1;
}
}
}
else
{
std::cerr << "Syntax error: " << token << "?\n";
return 1;
}
}
}
std::cout << "Rule sequence : "
<< subdivider.rules_as_string() << std::endl;
// -------------------- Initialize subdivider
std::cout << "Initialize subdivider\n";
if (!subdivider.initialize())
{
std::cerr << " Error!\n";
return 1;
}
//
MyMesh::FaceFaceIter ff_it;
double quality(0.0), face_quality, temp_quality;
int valence;
// ---------------------------------------- subdivide
std::cout << "\nSubdividing...\n";
OpenMesh::Utils::Timer timer, timer2;
size_t i;
if ( uniform )
{ // unifom
MyMesh::VertexHandle vh;
MyMesh::VertexIter v_it;
MyMesh::FaceHandle fh;
MyMesh::FaceIter f_it;
// raise all vertices to target state
timer.start();
size_t n = n_iter;
size_t n_rules = subdivider.n_rules();
i = 0;
// calculate target states for faces and vertices
int target1 = (n - 1) * n_rules + subdivider.subdiv_rule().number() + 1;
int target2 = n * n_rules;
for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
if (mesh.data(f_it).state() < target1) {
++i;
fh = f_it.handle();
timer2.start();
subdivider.refine(fh);
timer2.stop();
}
}
for (v_it = mesh.vertices_begin(); v_it != mesh.vertices_end(); ++v_it) {
if (mesh.data(v_it).state() < target2) {
vh = v_it.handle();
timer2.cont();
subdivider.refine(vh);
timer2.stop();
}
}
timer.stop();
}
else
{ // adaptive
MyMesh::FaceIter f_it;
MyMesh::FaceHandle fh;
std::vector<double> __acos;
size_t buckets(3000);
double range(2.0);
double range2bucket(buckets/range);
for (i = 0; i < buckets; ++i)
__acos.push_back( acos(-1.0 + i * range / buckets) );
timer.start(); // total time needed
// n iterations or until desired number of vertices reached approx.
for (i = 0; i < n_iter && mesh.n_vertices() < max_nv; ++i)
{
mesh.update_face_normals();
// calculate quality
quality = 0.0;
fh = mesh.faces_begin().handle();
// check every face
for (f_it = mesh.faces_begin(); f_it != mesh.faces_end(); ++f_it) {
face_quality = 0.0;
valence = 0;
for (ff_it = mesh.ff_iter(f_it.handle()); ff_it; ++ff_it) {
temp_quality = OpenMesh::dot( mesh.normal(f_it),
mesh.normal(ff_it) );
if (temp_quality >= 1.0)
temp_quality = .99;
else if (temp_quality <= -1.0)
temp_quality = -.99;
temp_quality = (1.0+temp_quality) * range2bucket;
face_quality += __acos[int(temp_quality+.5)];
++valence;
}
face_quality /= valence;
// calaculate face area
MyMesh::Point p1, p2, p3;
MyMesh::Scalar area;
#define heh halfedge_handle
#define nheh next_halfedge_handle
#define tvh to_vertex_handle
#define fvh from_vertex_handle
p1 = mesh.point(mesh.tvh(mesh.heh(f_it.handle())));
p2 = mesh.point(mesh.fvh(mesh.heh(f_it.handle())));
p3 = mesh.point(mesh.tvh(mesh.nheh(mesh.heh(f_it.handle()))));
#undef heh
#undef nheh
#undef tvh
#undef fvh
area = ((p2 - p1) % (p3 - p1)).norm();
// weight face_quality
face_quality *= pow(double(area), double(.1));
//face_quality *= area;
if (face_quality >= quality && !mesh.is_boundary(f_it.handle()))
{
quality = face_quality;
fh = f_it.handle();
}
}
// Subdivide Face
timer2.cont();
subdivider.refine(fh);
timer2.stop();
}
// calculate time
timer.stop();
} // uniform/adaptive?
// calculate maximum refinement level
Adaptive::state_t max_level(0);
for (MyMesh::VertexIter v_it = mesh.vertices_begin();
v_it != mesh.vertices_end(); ++v_it)
{
if (mesh.data(v_it).state() > max_level)
max_level = mesh.data(v_it).state();
}
// output results
std::cout << "\nDid " << i << (uniform ? " uniform " : "" )
<< " subdivision steps in "
<< timer.as_string()
<< ", " << i/timer.seconds() << " steps/s\n";
std::cout << " only refinement: " << timer2.as_string()
<< ", " << i/timer2.seconds() << " steps/s\n\n";
std::cout << "Before: ";
std::cout << n_vertices << " Vertices, ";
std::cout << n_edges << " Edges, ";
std::cout << n_faces << " Faces. \n";
std::cout << "Now : ";
std::cout << mesh.n_vertices() << " Vertices, ";
std::cout << mesh.n_edges() << " Edges, ";
std::cout << mesh.n_faces() << " Faces. \n\n";
std::cout << "Maximum quality : " << quality << std::endl;
std::cout << "Maximum Subdivision Level: " << max_level/subdivider.n_rules()
<< std::endl << std::endl;
// ---------------------------------------- write mesh to file
{
if ( ofname.empty() )
{
std::stringstream s;
s << "result." << subdivider.rules_as_string("_")
<< "-" << i << "x.off";
s >> ofname;
}
std::cout << "Output file: '" << ofname << "'.\n";
if (!OpenMesh::IO::write_mesh(mesh, ofname, OpenMesh::IO::Options::Binary))
{
std::cerr << " Error writing file!\n";
return 1;
}
}
return 0;
}
// ----------------------------------------------------------------------------
// helper
void usage_and_exit(const std::string& _fname, int xcode)
{
using namespace std;
cout << endl
<< "Usage: " << basename(_fname)
<< " [Options] input-mesh [output-mesh]\n\n";
cout << "\tAdaptively refine an input-mesh. The refined mesh is stored in\n"
<< "\ta file named \"result.XXX.off\" (binary .off), if not specified\n"
<< "\texplicitely (optional 2nd parameter of command line).\n\n";
cout << "Options:\n\n";
cout << "-m <int>\n\tAdaptively refine up to approx. <int> vertices.\n\n"
<< "-n <int>\n\tAdaptively refine <int> times.\n\n"
<< "-r <rule sequence>\n\tDefine a custom rule sequence.\n\n"
<< "-l\n\tUse rule sequence for adaptive Loop.\n\n"
<< "-s\n\tUse rule sequence for adaptive sqrt(3).\n\n"
<< "-U\n\tRefine mesh uniformly (simulates uniform subdivision).\n\n";
exit(xcode);
}
std::string basename(const std::string& _f)
{
std::string::size_type dot = _f.rfind("/");
if (dot == std::string::npos)
return _f;
return _f.substr(dot+1, _f.length()-(dot+1));
}
// ----------------------------------------------------------------------------
// end of file
// ============================================================================