Files
openmesh/src/OpenMesh/Core/Mesh/SmartRange.hh
2020-10-29 10:34:12 +01:00

495 lines
17 KiB
C++

/* ========================================================================= *
* *
* OpenMesh *
* Copyright (c) 2001-2019, RWTH-Aachen University *
* Department of Computer Graphics and Multimedia *
* All rights reserved. *
* www.openmesh.org *
* *
*---------------------------------------------------------------------------*
* This file is part of OpenMesh. *
*---------------------------------------------------------------------------*
* *
* Redistribution and use in source and binary forms, with or without *
* modification, are permitted provided that the following conditions *
* are met: *
* *
* 1. Redistributions of source code must retain the above copyright notice, *
* this list of conditions and the following disclaimer. *
* *
* 2. Redistributions in binary form must reproduce the above copyright *
* notice, this list of conditions and the following disclaimer in the *
* documentation and/or other materials provided with the distribution. *
* *
* 3. Neither the name of the copyright holder nor the names of its *
* contributors may be used to endorse or promote products derived from *
* this software without specific prior written permission. *
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
* *
* ========================================================================= */
#pragma once
#include <utility>
#include <array>
#include <vector>
#include <set>
//== NAMESPACES ===============================================================
namespace OpenMesh {
//== FORWARD DECLARATION ======================================================
//== CLASS DEFINITION =========================================================
namespace {
struct Identity
{
template <typename T>
T operator()(const T& _t) const { return _t; }
};
}
template <typename RangeT, typename HandleT, typename Functor>
struct FilteredSmartRangeT;
/// Base class for all smart range types
template <typename RangeT, typename HandleT>
struct SmartRangeT
{
using Handle = HandleT;
using SmartRange = SmartRangeT<RangeT, HandleT>;
using Range = RangeT;
// TODO: Someone with better c++ knowledge may improve the code below.
/** @brief Computes the sum of elements.
*
* Computes the sum of all elements in the range after applying the functor \p f.
*
* @param f Functor that is applied to all elements before computing the sum
*/
template <typename Functor>
auto sum(Functor&& f) -> typename std::decay<decltype (f(std::declval<HandleT>()))>::type
{
auto range = static_cast<const RangeT*>(this);
auto begin = range->begin();
auto end = range->end();
assert(begin != end);
typename std::decay<decltype (f(*begin))>::type result = f(*begin);
auto it = begin;
++it;
for (; it != end; ++it)
result += f(*it);
return result;
}
/** @brief Computes the average of elements.
*
* Computes the average of all elements in the range after applying the functor \p f.
*
* @param f Functor that is applied to all elements before computing the average.
*/
template <typename Functor>
auto avg(Functor&& f) -> typename std::decay<decltype (f(std::declval<HandleT>()))>::type
{
auto range = static_cast<const RangeT*>(this);
auto begin = range->begin();
auto end = range->end();
assert(begin != end);
typename std::decay<decltype (f(*begin))>::type result = f(*begin);
auto it = begin;
++it;
int n_elements = 1;
for (; it != end; ++it)
{
result += f(*it);
++n_elements;
}
return (1.0 / n_elements) * result;
}
/** @brief Computes the weighted average of elements.
*
* Computes the weighted average of all elements in the range after applying the functor \p f.
*
* @param f Functor that is applied to all elements before computing the average.
* @param w Functor returning element weight.
*/
template <typename Functor, typename WeightFunctor>
auto avg(Functor&& f, WeightFunctor&& w) -> typename std::decay<decltype ((1.0/(w(std::declval<HandleT>())+w(std::declval<HandleT>())))*f(std::declval<HandleT>()))>::type
{
auto range = static_cast<const RangeT*>(this);
auto begin = range->begin();
auto end = range->end();
assert(begin != end);
typename std::decay<decltype (w(*begin))>::type weight = w(*begin);
typename std::decay<decltype (w(*begin)*f(*begin))>::type result = weight * f(*begin);
typename std::decay<decltype (w(*begin)+w(*begin))>::type weight_sum = weight;
auto it = begin;
++it;
for (; it != end; ++it)
{
weight = w(*it);
result += weight*f(*it);
weight_sum += weight;
}
return (1.0 / weight_sum) * result;
}
/** @brief Check if any element fulfils condition.
*
* Checks if functor \p f returns true for any of the elements in the range.
* Returns true if that is the case, false otherwise.
*
* @param f Functor that is evaluated for all elements.
*/
template <typename Functor>
auto any_of(Functor&& f) -> bool
{
auto range = static_cast<const RangeT*>(this);
for (auto e : *range)
if (f(e))
return true;
return false;
}
/** @brief Check if all elements fulfil condition.
*
* Checks if functor \p f returns true for all of the elements in the range.
* Returns true if that is the case, false otherwise.
*
* @param f Functor that is evaluated for all elements.
*/
template <typename Functor>
auto all_of(Functor&& f) -> bool
{
auto range = static_cast<const RangeT*>(this);
for (auto e : *range)
if (!f(e))
return false;
return true;
}
/** @brief Convert range to array.
*
* Converts the range of elements into an array of objects returned by functor \p f.
* The size of the array needs to be provided by the user. If the size is larger than the number of
* elements in the range, the remaining entries of the array will be uninitialized.
*
* @param f Functor that is applied to all elements before putting them into the array. If no functor is provided
* the array will contain the handles.
*/
template <int n, typename Functor = Identity>
auto to_array(Functor&& f = {}) -> std::array<typename std::decay<decltype (f(std::declval<HandleT>()))>::type, n>
{
auto range = static_cast<const RangeT*>(this);
std::array<typename std::decay<decltype (f(std::declval<HandleT>()))>::type, n> res;
auto it = range->begin();
auto end = range->end();
int i = 0;
while (i < n && it != end)
res[i++] = f(*(it++));
return res;
}
/** @brief Convert range to vector.
*
* Converts the range of elements into a vector of objects returned by functor \p f.
*
* @param f Functor that is applied to all elements before putting them into the vector. If no functor is provided
* the vector will contain the handles.
*/
template <typename Functor = Identity>
auto to_vector(Functor&& f = {}) -> std::vector<typename std::decay<decltype (f(std::declval<HandleT>()))>::type>
{
auto range = static_cast<const RangeT*>(this);
std::vector<typename std::decay<decltype (f(std::declval<HandleT>()))>::type> res;
for (const auto& e : *range)
res.push_back(f(e));
return res;
}
/** @brief Convert range to set.
*
* Converts the range of elements into a set of objects returned by functor \p f.
*
* @param f Functor that is applied to all elements before putting them into the set. If no functor is provided
* the set will contain the handles.
*/
template <typename Functor = Identity>
auto to_set(Functor&& f = {}) -> std::set<typename std::decay<decltype (f(std::declval<HandleT>()))>::type>
{
auto range = static_cast<const RangeT*>(this);
std::set<typename std::decay<decltype (f(std::declval<HandleT>()))>::type> res;
for (const auto& e : *range)
res.insert(f(e));
return res;
}
/** @brief Get the first element that fulfills a condition.
*
* Finds the first element of the range for which the functor \p f evaluates to true.
* Returns an invalid handle if none evaluates to true
*
* @param f Functor that is applied to all elements before putting them into the set. If no functor is provided
* the set will contain the handles.
*/
template <typename Functor>
auto first(Functor&& f = {}) -> HandleT
{
auto range = static_cast<const RangeT*>(this);
for (const auto& e : *range)
if (f(e))
return e;
return HandleT();
}
/** @brief Compute minimum.
*
* Computes the minimum of all objects returned by functor \p f.
*
* @param f Functor that is applied to all elements before computing minimum.
*/
template <typename Functor>
auto min(Functor&& f) -> typename std::decay<decltype (f(std::declval<HandleT>()))>::type
{
using std::min;
auto range = static_cast<const RangeT*>(this);
auto it = range->begin();
auto end = range->end();
assert(it != end);
typename std::decay<decltype (f(std::declval<HandleT>()))>::type res = f(*it);
++it;
for (; it != end; ++it)
res = min(res, f(*it));
return res;
}
/** @brief Compute minimal element.
*
* Computes the element that minimizes \p f.
*
* @param f Functor that is applied to all elements before comparing.
*/
template <typename Functor>
auto argmin(Functor&& f) -> HandleT
{
auto range = static_cast<const RangeT*>(this);
auto it = range->begin();
auto min_it = it;
auto end = range->end();
assert(it != end);
typename std::decay<decltype (f(std::declval<HandleT>()))>::type curr_min = f(*it);
++it;
for (; it != end; ++it)
{
auto val = f(*it);
if (val < curr_min)
{
curr_min = val;
min_it = it;
}
}
return *min_it;
}
/** @brief Compute maximum.
*
* Computes the maximum of all objects returned by functor \p f.
*
* @param f Functor that is applied to all elements before computing maximum.
*/
template <typename Functor>
auto max(Functor&& f) -> typename std::decay<decltype (f(std::declval<HandleT>()))>::type
{
using std::max;
auto range = static_cast<const RangeT*>(this);
auto it = range->begin();
auto end = range->end();
assert(it != end);
typename std::decay<decltype (f(std::declval<HandleT>()))>::type res = f(*it);
++it;
for (; it != end; ++it)
res = max(res, f(*it));
return res;
}
/** @brief Compute maximal element.
*
* Computes the element that maximizes \p f.
*
* @param f Functor that is applied to all elements before comparing.
*/
template <typename Functor>
auto argmax(Functor&& f) -> HandleT
{
auto range = static_cast<const RangeT*>(this);
auto it = range->begin();
auto max_it = it;
auto end = range->end();
assert(it != end);
typename std::decay<decltype (f(std::declval<HandleT>()))>::type curr_max = f(*it);
++it;
for (; it != end; ++it)
{
auto val = f(*it);
if (val > curr_max)
{
curr_max = val;
max_it = it;
}
}
return *max_it;
}
/** @brief Computes minimum and maximum.
*
* Computes the minimum and maximum of all objects returned by functor \p f. Result is returned as std::pair
* containing minimum as first and maximum as second element.
*
* @param f Functor that is applied to all elements before computing maximum.
*/
template <typename Functor>
auto minmax(Functor&& f) -> std::pair<typename std::decay<decltype (f(std::declval<HandleT>()))>::type,
typename std::decay<decltype (f(std::declval<HandleT>()))>::type>
{
return std::make_pair(this->min(f), this->max(f));
}
/** @brief Compute number of elements that satisfy a given predicate.
*
* Computes the numer of elements which satisfy functor \p f.
*
* @param f Predicate that elements have to satisfy in order to be counted.
*/
template <typename Functor>
auto count_if(Functor&& f) -> int
{
int count = 0;
auto range = static_cast<const RangeT*>(this);
for (const auto& e : *range)
if (f(e))
++count;
return count;
}
/** @brief Apply a functor to each element.
*
* Calls functor \p f with each element as parameter
*
* @param f Functor that is called for each element.
*/
template <typename Functor>
auto for_each(Functor&& f) -> void
{
auto range = static_cast<const RangeT*>(this);
for (const auto& e : *range)
f(e);
}
/** @brief Only iterate over a subset of elements
*
* Returns a smart range which skips all elements that do not satisfy functor \p f
*
* @param f Functor that needs to be evaluated to true if the element should not be skipped.
*/
template <typename Functor>
auto filtered(Functor&& f) -> FilteredSmartRangeT<SmartRange, Handle, Functor>
{
auto range = static_cast<const RangeT*>(this);
return FilteredSmartRangeT<SmartRange, Handle, Functor>(std::forward<Functor>(f), (*range).begin(), (*range).end());
}
};
/// Class which applies a filter when iterating over elements
template <typename RangeT, typename HandleT, typename Functor>
struct FilteredSmartRangeT : public SmartRangeT<FilteredSmartRangeT<RangeT, HandleT, Functor>, HandleT>
{
using BaseRange = SmartRangeT<FilteredSmartRangeT<RangeT, HandleT, Functor>, HandleT>;
using BaseIterator = decltype((std::declval<typename RangeT::Range>().begin()));
struct FilteredIterator : public BaseIterator
{
FilteredIterator(Functor f, BaseIterator it, BaseIterator end): BaseIterator(it), f_(f), end_(end)
{
if (!BaseIterator::operator==(end_) && !f_(*(*this))) // if start is not valid go to first valid one
operator++();
}
FilteredIterator& operator=(const FilteredIterator& other)
{
BaseIterator::operator=(other);
end_ = other.end_;
return *this;
}
FilteredIterator& operator++()
{
if (BaseIterator::operator==(end_)) // don't go past end
return *this;
// go to next valid one
do
BaseIterator::operator++();
while (BaseIterator::operator!=(end_) && !f_(*(*this)));
return *this;
}
Functor f_; // Should iterators always get a reference to filter stored in range?
// Should iterators stay valid after range goes out of scope?
BaseIterator end_;
};
FilteredSmartRangeT(Functor&& f, BaseIterator begin, BaseIterator end) : f_(std::forward<Functor>(f)), begin_(std::move(begin)), end_(std::move(end)){}
FilteredIterator begin() const { return FilteredIterator(f_, begin_, end_); }
FilteredIterator end() const { return FilteredIterator(f_, end_, end_); }
Functor f_;
BaseIterator begin_;
BaseIterator end_;
};
//=============================================================================
} // namespace OpenMesh
//=============================================================================
//=============================================================================